Properties

Label 2-2013-1.1-c3-0-140
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.691·2-s − 3·3-s − 7.52·4-s − 5.77·5-s + 2.07·6-s + 9.57·7-s + 10.7·8-s + 9·9-s + 3.99·10-s − 11·11-s + 22.5·12-s + 4.33·13-s − 6.62·14-s + 17.3·15-s + 52.7·16-s − 93.4·17-s − 6.22·18-s − 19.5·19-s + 43.4·20-s − 28.7·21-s + 7.60·22-s + 105.·23-s − 32.1·24-s − 91.6·25-s − 2.99·26-s − 27·27-s − 72.0·28-s + ⋯
L(s)  = 1  − 0.244·2-s − 0.577·3-s − 0.940·4-s − 0.516·5-s + 0.141·6-s + 0.517·7-s + 0.474·8-s + 0.333·9-s + 0.126·10-s − 0.301·11-s + 0.542·12-s + 0.0924·13-s − 0.126·14-s + 0.298·15-s + 0.824·16-s − 1.33·17-s − 0.0814·18-s − 0.235·19-s + 0.485·20-s − 0.298·21-s + 0.0737·22-s + 0.960·23-s − 0.273·24-s − 0.733·25-s − 0.0226·26-s − 0.192·27-s − 0.486·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 0.691T + 8T^{2} \)
5 \( 1 + 5.77T + 125T^{2} \)
7 \( 1 - 9.57T + 343T^{2} \)
13 \( 1 - 4.33T + 2.19e3T^{2} \)
17 \( 1 + 93.4T + 4.91e3T^{2} \)
19 \( 1 + 19.5T + 6.85e3T^{2} \)
23 \( 1 - 105.T + 1.21e4T^{2} \)
29 \( 1 + 157.T + 2.43e4T^{2} \)
31 \( 1 - 208.T + 2.97e4T^{2} \)
37 \( 1 + 270.T + 5.06e4T^{2} \)
41 \( 1 - 401.T + 6.89e4T^{2} \)
43 \( 1 - 125.T + 7.95e4T^{2} \)
47 \( 1 - 22.5T + 1.03e5T^{2} \)
53 \( 1 - 722.T + 1.48e5T^{2} \)
59 \( 1 + 208.T + 2.05e5T^{2} \)
67 \( 1 - 441.T + 3.00e5T^{2} \)
71 \( 1 - 1.02e3T + 3.57e5T^{2} \)
73 \( 1 + 950.T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 - 448.T + 5.71e5T^{2} \)
89 \( 1 + 1.01e3T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.458998236518450853190081528162, −7.71681235067371123923464059584, −6.96003135633057052356206666003, −5.90534801786471506557774995393, −5.04111814763604383356386493129, −4.42368385257447062616680286186, −3.67394556152249371461909783943, −2.20424723275579649860386492708, −0.920591100130795540303372878781, 0, 0.920591100130795540303372878781, 2.20424723275579649860386492708, 3.67394556152249371461909783943, 4.42368385257447062616680286186, 5.04111814763604383356386493129, 5.90534801786471506557774995393, 6.96003135633057052356206666003, 7.71681235067371123923464059584, 8.458998236518450853190081528162

Graph of the $Z$-function along the critical line