Properties

Label 2-2013-1.1-c3-0-207
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.80·2-s − 3·3-s − 4.75·4-s + 13.7·5-s + 5.40·6-s + 7.13·7-s + 22.9·8-s + 9·9-s − 24.7·10-s − 11·11-s + 14.2·12-s − 57.5·13-s − 12.8·14-s − 41.1·15-s − 3.40·16-s + 37.5·17-s − 16.2·18-s + 59.5·19-s − 65.1·20-s − 21.3·21-s + 19.8·22-s + 121.·23-s − 68.9·24-s + 63.1·25-s + 103.·26-s − 27·27-s − 33.8·28-s + ⋯
L(s)  = 1  − 0.637·2-s − 0.577·3-s − 0.594·4-s + 1.22·5-s + 0.367·6-s + 0.385·7-s + 1.01·8-s + 0.333·9-s − 0.781·10-s − 0.301·11-s + 0.342·12-s − 1.22·13-s − 0.245·14-s − 0.708·15-s − 0.0531·16-s + 0.535·17-s − 0.212·18-s + 0.719·19-s − 0.728·20-s − 0.222·21-s + 0.192·22-s + 1.09·23-s − 0.586·24-s + 0.504·25-s + 0.782·26-s − 0.192·27-s − 0.228·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 1.80T + 8T^{2} \)
5 \( 1 - 13.7T + 125T^{2} \)
7 \( 1 - 7.13T + 343T^{2} \)
13 \( 1 + 57.5T + 2.19e3T^{2} \)
17 \( 1 - 37.5T + 4.91e3T^{2} \)
19 \( 1 - 59.5T + 6.85e3T^{2} \)
23 \( 1 - 121.T + 1.21e4T^{2} \)
29 \( 1 + 129.T + 2.43e4T^{2} \)
31 \( 1 - 126.T + 2.97e4T^{2} \)
37 \( 1 + 153.T + 5.06e4T^{2} \)
41 \( 1 + 141.T + 6.89e4T^{2} \)
43 \( 1 + 128.T + 7.95e4T^{2} \)
47 \( 1 + 213.T + 1.03e5T^{2} \)
53 \( 1 + 379.T + 1.48e5T^{2} \)
59 \( 1 - 35.7T + 2.05e5T^{2} \)
67 \( 1 + 275.T + 3.00e5T^{2} \)
71 \( 1 + 146.T + 3.57e5T^{2} \)
73 \( 1 - 663.T + 3.89e5T^{2} \)
79 \( 1 + 127.T + 4.93e5T^{2} \)
83 \( 1 + 803.T + 5.71e5T^{2} \)
89 \( 1 - 37.7T + 7.04e5T^{2} \)
97 \( 1 - 1.40e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.506218873765470353229723047191, −7.64271199043892613912976981432, −6.98027253316679782229142217218, −5.89017622492163751517578250157, −5.05729295043210683822936360060, −4.81049091775451903189028764256, −3.27688279213590323580716043382, −1.99786410653681859137674236333, −1.16592920861015003364541629140, 0, 1.16592920861015003364541629140, 1.99786410653681859137674236333, 3.27688279213590323580716043382, 4.81049091775451903189028764256, 5.05729295043210683822936360060, 5.89017622492163751517578250157, 6.98027253316679782229142217218, 7.64271199043892613912976981432, 8.506218873765470353229723047191

Graph of the $Z$-function along the critical line