Properties

Label 2-2013-1.1-c3-0-217
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.38·2-s + 3·3-s + 11.2·4-s − 10.2·5-s − 13.1·6-s + 22.1·7-s − 14.1·8-s + 9·9-s + 45.1·10-s + 11·11-s + 33.6·12-s + 16.1·13-s − 97.1·14-s − 30.8·15-s − 27.8·16-s + 26.3·17-s − 39.4·18-s + 76.7·19-s − 115.·20-s + 66.4·21-s − 48.2·22-s − 97.9·23-s − 42.3·24-s − 19.0·25-s − 70.6·26-s + 27·27-s + 248.·28-s + ⋯
L(s)  = 1  − 1.55·2-s + 0.577·3-s + 1.40·4-s − 0.920·5-s − 0.894·6-s + 1.19·7-s − 0.623·8-s + 0.333·9-s + 1.42·10-s + 0.301·11-s + 0.809·12-s + 0.343·13-s − 1.85·14-s − 0.531·15-s − 0.435·16-s + 0.376·17-s − 0.516·18-s + 0.926·19-s − 1.29·20-s + 0.690·21-s − 0.467·22-s − 0.888·23-s − 0.360·24-s − 0.152·25-s − 0.532·26-s + 0.192·27-s + 1.67·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 4.38T + 8T^{2} \)
5 \( 1 + 10.2T + 125T^{2} \)
7 \( 1 - 22.1T + 343T^{2} \)
13 \( 1 - 16.1T + 2.19e3T^{2} \)
17 \( 1 - 26.3T + 4.91e3T^{2} \)
19 \( 1 - 76.7T + 6.85e3T^{2} \)
23 \( 1 + 97.9T + 1.21e4T^{2} \)
29 \( 1 + 17.8T + 2.43e4T^{2} \)
31 \( 1 - 42.4T + 2.97e4T^{2} \)
37 \( 1 + 279.T + 5.06e4T^{2} \)
41 \( 1 - 54.7T + 6.89e4T^{2} \)
43 \( 1 - 89.2T + 7.95e4T^{2} \)
47 \( 1 + 492.T + 1.03e5T^{2} \)
53 \( 1 + 685.T + 1.48e5T^{2} \)
59 \( 1 + 628.T + 2.05e5T^{2} \)
67 \( 1 - 1.02e3T + 3.00e5T^{2} \)
71 \( 1 + 38.6T + 3.57e5T^{2} \)
73 \( 1 + 1.12e3T + 3.89e5T^{2} \)
79 \( 1 - 471.T + 4.93e5T^{2} \)
83 \( 1 - 880.T + 5.71e5T^{2} \)
89 \( 1 + 394.T + 7.04e5T^{2} \)
97 \( 1 + 84.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.175364900415171754403599580511, −7.996844710362471781119914642349, −7.39443497570403572456286150851, −6.44025049796344186171833224482, −5.10043497383244928048010257535, −4.17260197557901568907945533803, −3.21455203162654098632965282454, −1.88111634544781485315549332812, −1.23273189595762489011104348647, 0, 1.23273189595762489011104348647, 1.88111634544781485315549332812, 3.21455203162654098632965282454, 4.17260197557901568907945533803, 5.10043497383244928048010257535, 6.44025049796344186171833224482, 7.39443497570403572456286150851, 7.996844710362471781119914642349, 8.175364900415171754403599580511

Graph of the $Z$-function along the critical line