Properties

Label 2-2013-1.1-c3-0-126
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.439·2-s + 3·3-s − 7.80·4-s − 18.8·5-s + 1.31·6-s − 35.5·7-s − 6.95·8-s + 9·9-s − 8.30·10-s + 11·11-s − 23.4·12-s + 49.3·13-s − 15.6·14-s − 56.6·15-s + 59.3·16-s − 110.·17-s + 3.95·18-s + 71.2·19-s + 147.·20-s − 106.·21-s + 4.83·22-s − 66.5·23-s − 20.8·24-s + 231.·25-s + 21.7·26-s + 27·27-s + 277.·28-s + ⋯
L(s)  = 1  + 0.155·2-s + 0.577·3-s − 0.975·4-s − 1.68·5-s + 0.0897·6-s − 1.91·7-s − 0.307·8-s + 0.333·9-s − 0.262·10-s + 0.301·11-s − 0.563·12-s + 1.05·13-s − 0.298·14-s − 0.974·15-s + 0.928·16-s − 1.57·17-s + 0.0518·18-s + 0.859·19-s + 1.64·20-s − 1.10·21-s + 0.0468·22-s − 0.603·23-s − 0.177·24-s + 1.85·25-s + 0.163·26-s + 0.192·27-s + 1.87·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 0.439T + 8T^{2} \)
5 \( 1 + 18.8T + 125T^{2} \)
7 \( 1 + 35.5T + 343T^{2} \)
13 \( 1 - 49.3T + 2.19e3T^{2} \)
17 \( 1 + 110.T + 4.91e3T^{2} \)
19 \( 1 - 71.2T + 6.85e3T^{2} \)
23 \( 1 + 66.5T + 1.21e4T^{2} \)
29 \( 1 - 275.T + 2.43e4T^{2} \)
31 \( 1 - 188.T + 2.97e4T^{2} \)
37 \( 1 - 337.T + 5.06e4T^{2} \)
41 \( 1 + 146.T + 6.89e4T^{2} \)
43 \( 1 + 535.T + 7.95e4T^{2} \)
47 \( 1 + 220.T + 1.03e5T^{2} \)
53 \( 1 + 574.T + 1.48e5T^{2} \)
59 \( 1 + 305.T + 2.05e5T^{2} \)
67 \( 1 - 110.T + 3.00e5T^{2} \)
71 \( 1 - 281.T + 3.57e5T^{2} \)
73 \( 1 - 548.T + 3.89e5T^{2} \)
79 \( 1 - 428.T + 4.93e5T^{2} \)
83 \( 1 + 335.T + 5.71e5T^{2} \)
89 \( 1 - 1.08e3T + 7.04e5T^{2} \)
97 \( 1 - 1.54e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.370476154923061413556114954212, −7.931606843248005109256792043571, −6.59980111079211645115111823544, −6.42904977331512262929425674702, −4.78375218341626629186824580449, −4.11078518004144118104353750593, −3.44349382064713472833820530220, −2.95254270622752096945318436378, −0.848416944693612690873217972371, 0, 0.848416944693612690873217972371, 2.95254270622752096945318436378, 3.44349382064713472833820530220, 4.11078518004144118104353750593, 4.78375218341626629186824580449, 6.42904977331512262929425674702, 6.59980111079211645115111823544, 7.931606843248005109256792043571, 8.370476154923061413556114954212

Graph of the $Z$-function along the critical line