Properties

Label 2-2013-1.1-c3-0-248
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.121·2-s + 3·3-s − 7.98·4-s + 12.2·5-s − 0.363·6-s + 1.74·7-s + 1.93·8-s + 9·9-s − 1.48·10-s + 11·11-s − 23.9·12-s − 16.8·13-s − 0.210·14-s + 36.8·15-s + 63.6·16-s − 69.8·17-s − 1.08·18-s + 76.4·19-s − 98.0·20-s + 5.22·21-s − 1.33·22-s − 164.·23-s + 5.80·24-s + 25.8·25-s + 2.04·26-s + 27·27-s − 13.9·28-s + ⋯
L(s)  = 1  − 0.0427·2-s + 0.577·3-s − 0.998·4-s + 1.09·5-s − 0.0247·6-s + 0.0940·7-s + 0.0854·8-s + 0.333·9-s − 0.0470·10-s + 0.301·11-s − 0.576·12-s − 0.359·13-s − 0.00402·14-s + 0.634·15-s + 0.994·16-s − 0.996·17-s − 0.0142·18-s + 0.923·19-s − 1.09·20-s + 0.0543·21-s − 0.0129·22-s − 1.48·23-s + 0.0493·24-s + 0.206·25-s + 0.0153·26-s + 0.192·27-s − 0.0939·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 0.121T + 8T^{2} \)
5 \( 1 - 12.2T + 125T^{2} \)
7 \( 1 - 1.74T + 343T^{2} \)
13 \( 1 + 16.8T + 2.19e3T^{2} \)
17 \( 1 + 69.8T + 4.91e3T^{2} \)
19 \( 1 - 76.4T + 6.85e3T^{2} \)
23 \( 1 + 164.T + 1.21e4T^{2} \)
29 \( 1 + 191.T + 2.43e4T^{2} \)
31 \( 1 - 219.T + 2.97e4T^{2} \)
37 \( 1 - 142.T + 5.06e4T^{2} \)
41 \( 1 + 332.T + 6.89e4T^{2} \)
43 \( 1 + 154.T + 7.95e4T^{2} \)
47 \( 1 + 356.T + 1.03e5T^{2} \)
53 \( 1 - 422.T + 1.48e5T^{2} \)
59 \( 1 + 75.2T + 2.05e5T^{2} \)
67 \( 1 - 193.T + 3.00e5T^{2} \)
71 \( 1 + 202.T + 3.57e5T^{2} \)
73 \( 1 - 322.T + 3.89e5T^{2} \)
79 \( 1 + 25.9T + 4.93e5T^{2} \)
83 \( 1 + 309.T + 5.71e5T^{2} \)
89 \( 1 - 53.0T + 7.04e5T^{2} \)
97 \( 1 + 232.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.462020083742290173103740389508, −7.893004306429166919194306509717, −6.80388479704819312665677079361, −5.94430686797408736385110017982, −5.13409548792426128269733816580, −4.32312422846139434374376743375, −3.42186374055998968078449473980, −2.26468324907869753409985327970, −1.41424997742856864882106526420, 0, 1.41424997742856864882106526420, 2.26468324907869753409985327970, 3.42186374055998968078449473980, 4.32312422846139434374376743375, 5.13409548792426128269733816580, 5.94430686797408736385110017982, 6.80388479704819312665677079361, 7.893004306429166919194306509717, 8.462020083742290173103740389508

Graph of the $Z$-function along the critical line