Properties

Label 2-2013-1.1-c3-0-214
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·2-s + 3·3-s − 4.25·4-s + 7.94·5-s − 5.80·6-s − 25.7·7-s + 23.7·8-s + 9·9-s − 15.3·10-s + 11·11-s − 12.7·12-s + 82.1·13-s + 49.8·14-s + 23.8·15-s − 11.7·16-s − 9.84·17-s − 17.4·18-s − 24.3·19-s − 33.8·20-s − 77.3·21-s − 21.2·22-s − 99.0·23-s + 71.1·24-s − 61.8·25-s − 158.·26-s + 27·27-s + 109.·28-s + ⋯
L(s)  = 1  − 0.683·2-s + 0.577·3-s − 0.532·4-s + 0.710·5-s − 0.394·6-s − 1.39·7-s + 1.04·8-s + 0.333·9-s − 0.486·10-s + 0.301·11-s − 0.307·12-s + 1.75·13-s + 0.952·14-s + 0.410·15-s − 0.183·16-s − 0.140·17-s − 0.227·18-s − 0.293·19-s − 0.378·20-s − 0.804·21-s − 0.206·22-s − 0.898·23-s + 0.604·24-s − 0.494·25-s − 1.19·26-s + 0.192·27-s + 0.741·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 1.93T + 8T^{2} \)
5 \( 1 - 7.94T + 125T^{2} \)
7 \( 1 + 25.7T + 343T^{2} \)
13 \( 1 - 82.1T + 2.19e3T^{2} \)
17 \( 1 + 9.84T + 4.91e3T^{2} \)
19 \( 1 + 24.3T + 6.85e3T^{2} \)
23 \( 1 + 99.0T + 1.21e4T^{2} \)
29 \( 1 - 11.2T + 2.43e4T^{2} \)
31 \( 1 + 52.7T + 2.97e4T^{2} \)
37 \( 1 + 171.T + 5.06e4T^{2} \)
41 \( 1 - 15.3T + 6.89e4T^{2} \)
43 \( 1 + 511.T + 7.95e4T^{2} \)
47 \( 1 - 68.5T + 1.03e5T^{2} \)
53 \( 1 - 255.T + 1.48e5T^{2} \)
59 \( 1 - 866.T + 2.05e5T^{2} \)
67 \( 1 + 246.T + 3.00e5T^{2} \)
71 \( 1 - 851.T + 3.57e5T^{2} \)
73 \( 1 + 722.T + 3.89e5T^{2} \)
79 \( 1 - 1.27e3T + 4.93e5T^{2} \)
83 \( 1 - 585.T + 5.71e5T^{2} \)
89 \( 1 - 631.T + 7.04e5T^{2} \)
97 \( 1 + 710.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.671715908438971007832164987544, −7.919538769091023959474425125973, −6.77183420637161905080882336901, −6.23820675800519131809513789025, −5.30646147491952288522666105186, −3.89460113019564349579361848778, −3.57594700957216746471180493016, −2.17388787256891786237316582785, −1.20600485751836057743549078406, 0, 1.20600485751836057743549078406, 2.17388787256891786237316582785, 3.57594700957216746471180493016, 3.89460113019564349579361848778, 5.30646147491952288522666105186, 6.23820675800519131809513789025, 6.77183420637161905080882336901, 7.919538769091023959474425125973, 8.671715908438971007832164987544

Graph of the $Z$-function along the critical line