Properties

Label 6-2008e3-2008.501-c0e3-0-0
Degree $6$
Conductor $8096384512$
Sign $1$
Analytic cond. $1.00638$
Root an. cond. $1.00106$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 6·4-s − 7-s − 10·8-s + 3·9-s + 11-s + 3·14-s + 15·16-s − 17-s − 9·18-s + 19-s − 3·22-s − 23-s + 3·25-s − 6·28-s + 29-s − 31-s − 21·32-s + 3·34-s + 18·36-s + 37-s − 3·38-s − 41-s + 43-s + 6·44-s + 3·46-s − 9·50-s + ⋯
L(s)  = 1  − 3·2-s + 6·4-s − 7-s − 10·8-s + 3·9-s + 11-s + 3·14-s + 15·16-s − 17-s − 9·18-s + 19-s − 3·22-s − 23-s + 3·25-s − 6·28-s + 29-s − 31-s − 21·32-s + 3·34-s + 18·36-s + 37-s − 3·38-s − 41-s + 43-s + 6·44-s + 3·46-s − 9·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 251^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 251^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 251^{3}\)
Sign: $1$
Analytic conductor: \(1.00638\)
Root analytic conductor: \(1.00106\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2008} (501, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{9} \cdot 251^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4973507331\)
\(L(\frac12)\) \(\approx\) \(0.4973507331\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
251$C_1$ \( ( 1 + T )^{3} \)
good3$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
7$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
11$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
17$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
19$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
23$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
29$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
31$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
37$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
41$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
43$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
53$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
59$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
61$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
79$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.587089118816356606508794573300, −7.943906029771986606418082809963, −7.85890243121670900242281729721, −7.60770011685702659017541070939, −7.19308054045805578545423018584, −7.06193118339918372458285833476, −6.85032389312096640173458943905, −6.62863881728536657951153311396, −6.60059441440115932412898267055, −6.41737218706723170672936707924, −5.66078732644009157287456966480, −5.65734402908629410094255396023, −5.29511286539865447909580420384, −4.56826994551210916486967403356, −4.37964919113387758996924017437, −4.17007871439038847074469495222, −3.54462451090239104262059073847, −3.36453910786621113678447280529, −3.07884610974690439801936395900, −2.58292251964824413891401667894, −2.11344967430654172826563837789, −2.02916724052185377498976035686, −1.28192959638677343639575011895, −1.15651804087806272246957086694, −0.875377605188674701690736104607, 0.875377605188674701690736104607, 1.15651804087806272246957086694, 1.28192959638677343639575011895, 2.02916724052185377498976035686, 2.11344967430654172826563837789, 2.58292251964824413891401667894, 3.07884610974690439801936395900, 3.36453910786621113678447280529, 3.54462451090239104262059073847, 4.17007871439038847074469495222, 4.37964919113387758996924017437, 4.56826994551210916486967403356, 5.29511286539865447909580420384, 5.65734402908629410094255396023, 5.66078732644009157287456966480, 6.41737218706723170672936707924, 6.60059441440115932412898267055, 6.62863881728536657951153311396, 6.85032389312096640173458943905, 7.06193118339918372458285833476, 7.19308054045805578545423018584, 7.60770011685702659017541070939, 7.85890243121670900242281729721, 7.943906029771986606418082809963, 8.587089118816356606508794573300

Graph of the $Z$-function along the critical line