Properties

Degree 2
Conductor $ 2^{2} \cdot 3 \cdot 167 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 1.41·5-s − 6-s − 8-s + 9-s + 1.41·10-s + 12-s − 1.41·15-s + 16-s + 1.41·17-s − 18-s − 1.41·20-s − 24-s + 1.00·25-s + 27-s + 1.41·30-s − 32-s − 1.41·34-s + 36-s + 1.41·40-s + 1.41·41-s − 1.41·43-s − 1.41·45-s + 48-s + 49-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 1.41·5-s − 6-s − 8-s + 9-s + 1.41·10-s + 12-s − 1.41·15-s + 16-s + 1.41·17-s − 18-s − 1.41·20-s − 24-s + 1.00·25-s + 27-s + 1.41·30-s − 32-s − 1.41·34-s + 36-s + 1.41·40-s + 1.41·41-s − 1.41·43-s − 1.41·45-s + 48-s + 49-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 2004 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 2004 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2004\)    =    \(2^{2} \cdot 3 \cdot 167\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{2004} (2003, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 2004,\ (\ :0),\ 1)$
$L(\frac{1}{2})$  $\approx$  $0.8865223528$
$L(\frac12)$  $\approx$  $0.8865223528$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;167\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3,\;167\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
167 \( 1 - T \)
good5 \( 1 + 1.41T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - 1.41T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 1.41T + T^{2} \)
43 \( 1 + 1.41T + T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 - 1.41T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 - 1.41T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - 1.41T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + 2T + T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.214066079282701444981799988734, −8.412961246670247356577413665962, −7.916895219853405224120416975132, −7.41051997880905346986112716278, −6.67083347587613773843148875436, −5.37846181979361614360849979197, −4.03619821377025191371761572377, −3.41593054739066540491244199593, −2.47821479992055549652802069702, −1.07868558643509318116617262004, 1.07868558643509318116617262004, 2.47821479992055549652802069702, 3.41593054739066540491244199593, 4.03619821377025191371761572377, 5.37846181979361614360849979197, 6.67083347587613773843148875436, 7.41051997880905346986112716278, 7.916895219853405224120416975132, 8.412961246670247356577413665962, 9.214066079282701444981799988734

Graph of the $Z$-function along the critical line