Properties

Degree 2
Conductor $ 3 \cdot 23 \cdot 29 $
Sign $0.981 + 0.189i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)2-s i·3-s + i·4-s + (1 − i)6-s − 9-s + 12-s − 2i·13-s + 16-s + (−1 − i)18-s i·23-s + 25-s + (2 − 2i)26-s + i·27-s + i·29-s + (−1 + i)31-s + (1 + i)32-s + ⋯
L(s)  = 1  + (1 + i)2-s i·3-s + i·4-s + (1 − i)6-s − 9-s + 12-s − 2i·13-s + 16-s + (−1 − i)18-s i·23-s + 25-s + (2 − 2i)26-s + i·27-s + i·29-s + (−1 + i)31-s + (1 + i)32-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 2001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 2001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2001\)    =    \(3 \cdot 23 \cdot 29\)
\( \varepsilon \)  =  $0.981 + 0.189i$
motivic weight  =  \(0\)
character  :  $\chi_{2001} (1931, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 2001,\ (\ :0),\ 0.981 + 0.189i)$
$L(\frac{1}{2})$  $\approx$  $1.933768823$
$L(\frac12)$  $\approx$  $1.933768823$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;23,\;29\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{3,\;23,\;29\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 + iT \)
23 \( 1 + iT \)
29 \( 1 - iT \)
good2 \( 1 + (-1 - i)T + iT^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - iT^{2} \)
13 \( 1 + 2iT - T^{2} \)
17 \( 1 - iT^{2} \)
19 \( 1 + iT^{2} \)
31 \( 1 + (1 - i)T - iT^{2} \)
37 \( 1 - iT^{2} \)
41 \( 1 + (1 - i)T - iT^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (-1 + i)T - iT^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - 2iT - T^{2} \)
61 \( 1 + iT^{2} \)
67 \( 1 + T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (1 + i)T + iT^{2} \)
79 \( 1 + iT^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - iT^{2} \)
97 \( 1 - iT^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.818386907003194553262343213001, −8.311054210908338613961222226780, −7.38519636203980971489244978722, −7.01173845027374617510831424490, −6.08930402049363758613191143349, −5.46915395071510417297680507734, −4.84606035679535512913514622259, −3.48871735581238695571082916185, −2.76570478491314705304799496869, −1.11946198236062556720060919945, 1.80863970995744292176853033784, 2.71534346064884293610064227614, 3.85620080643315639556510783474, 4.14873997327109448197734214665, 5.06090099359527545749738494172, 5.77487939191565230315492397537, 6.82301674379719791647076645185, 7.909930291327359386067163393486, 9.013583199878180017521722825469, 9.448714402438412153078856361613

Graph of the $Z$-function along the critical line