Properties

Label 2-19-19.17-c3-0-2
Degree $2$
Conductor $19$
Sign $0.359 + 0.933i$
Analytic cond. $1.12103$
Root an. cond. $1.05879$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.824 − 4.67i)2-s + (5.76 + 4.83i)3-s + (−13.6 − 4.98i)4-s + (−14.0 + 5.10i)5-s + (27.3 − 22.9i)6-s + (3.64 + 6.31i)7-s + (−15.6 + 27.0i)8-s + (5.12 + 29.0i)9-s + (12.3 + 69.8i)10-s + (28.9 − 50.1i)11-s + (−54.7 − 94.8i)12-s + (−23.4 + 19.6i)13-s + (32.5 − 11.8i)14-s + (−105. − 38.3i)15-s + (24.2 + 20.3i)16-s + (3.85 − 21.8i)17-s + ⋯
L(s)  = 1  + (0.291 − 1.65i)2-s + (1.10 + 0.930i)3-s + (−1.71 − 0.622i)4-s + (−1.25 + 0.456i)5-s + (1.86 − 1.56i)6-s + (0.196 + 0.340i)7-s + (−0.689 + 1.19i)8-s + (0.189 + 1.07i)9-s + (0.389 + 2.20i)10-s + (0.793 − 1.37i)11-s + (−1.31 − 2.28i)12-s + (−0.499 + 0.419i)13-s + (0.621 − 0.226i)14-s + (−1.81 − 0.660i)15-s + (0.379 + 0.318i)16-s + (0.0549 − 0.311i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.359 + 0.933i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.359 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19\)
Sign: $0.359 + 0.933i$
Analytic conductor: \(1.12103\)
Root analytic conductor: \(1.05879\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{19} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 19,\ (\ :3/2),\ 0.359 + 0.933i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.08794 - 0.746464i\)
\(L(\frac12)\) \(\approx\) \(1.08794 - 0.746464i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 + (-2.88 - 82.7i)T \)
good2 \( 1 + (-0.824 + 4.67i)T + (-7.51 - 2.73i)T^{2} \)
3 \( 1 + (-5.76 - 4.83i)T + (4.68 + 26.5i)T^{2} \)
5 \( 1 + (14.0 - 5.10i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (-3.64 - 6.31i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (-28.9 + 50.1i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (23.4 - 19.6i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (-3.85 + 21.8i)T + (-4.61e3 - 1.68e3i)T^{2} \)
23 \( 1 + (3.80 + 1.38i)T + (9.32e3 + 7.82e3i)T^{2} \)
29 \( 1 + (15.0 + 85.1i)T + (-2.29e4 + 8.34e3i)T^{2} \)
31 \( 1 + (-54.4 - 94.3i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 - 158.T + 5.06e4T^{2} \)
41 \( 1 + (-101. - 84.9i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 + (228. - 83.0i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (-44.3 - 251. i)T + (-9.75e4 + 3.55e4i)T^{2} \)
53 \( 1 + (-120. - 43.9i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (-130. + 738. i)T + (-1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (582. + 211. i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (-18.4 - 104. i)T + (-2.82e5 + 1.02e5i)T^{2} \)
71 \( 1 + (1.04e3 - 381. i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + (-587. - 492. i)T + (6.75e4 + 3.83e5i)T^{2} \)
79 \( 1 + (42.1 + 35.3i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (77.4 + 134. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (617. - 518. i)T + (1.22e5 - 6.94e5i)T^{2} \)
97 \( 1 + (25.6 - 145. i)T + (-8.57e5 - 3.12e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.76997999828082017582765180814, −16.19362287317923906457571736510, −14.78623964527869869426042587399, −13.93164948359646993828488760943, −12.00276066907401681083882974551, −11.11006980051457222991261058371, −9.649205301203317854584770289427, −8.364147702628140400791917509095, −4.13705596117577828116897284437, −3.12469922670238722752503231938, 4.39650632406588305967414314283, 7.09490072640516785642662834080, 7.73290620206485525092770501635, 8.922317144352329385486730601750, 12.25015251753823355675548231621, 13.41510527095279214643140280109, 14.74585774464930676846998082268, 15.30425420312976504704934017861, 16.83572259781056476588680753984, 18.00047348559627673686483519101

Graph of the $Z$-function along the critical line