Properties

Label 4-19e2-1.1-c2e2-0-0
Degree $4$
Conductor $361$
Sign $1$
Analytic cond. $0.268026$
Root an. cond. $0.719522$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·4-s + 8·5-s − 10·7-s + 5·9-s − 20·11-s + 9·16-s + 30·17-s − 12·19-s − 40·20-s + 70·23-s − 2·25-s + 50·28-s − 80·35-s − 25·36-s − 40·43-s + 100·44-s + 40·45-s + 20·47-s − 23·49-s − 160·55-s − 80·61-s − 50·63-s + 35·64-s − 150·68-s + 210·73-s + 60·76-s + 200·77-s + ⋯
L(s)  = 1  − 5/4·4-s + 8/5·5-s − 1.42·7-s + 5/9·9-s − 1.81·11-s + 9/16·16-s + 1.76·17-s − 0.631·19-s − 2·20-s + 3.04·23-s − 0.0799·25-s + 1.78·28-s − 2.28·35-s − 0.694·36-s − 0.930·43-s + 2.27·44-s + 8/9·45-s + 0.425·47-s − 0.469·49-s − 2.90·55-s − 1.31·61-s − 0.793·63-s + 0.546·64-s − 2.20·68-s + 2.87·73-s + 0.789·76-s + 2.59·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(361\)    =    \(19^{2}\)
Sign: $1$
Analytic conductor: \(0.268026\)
Root analytic conductor: \(0.719522\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 361,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6512149308\)
\(L(\frac12)\) \(\approx\) \(0.6512149308\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad19$C_2$ \( 1 + 12 T + p^{2} T^{2} \)
good2$C_2^2$ \( 1 + 5 T^{2} + p^{4} T^{4} \)
3$C_2^2$ \( 1 - 5 T^{2} + p^{4} T^{4} \)
5$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 + 5 T + p^{2} T^{2} )^{2} \)
11$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 p T^{2} + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 15 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 - 35 T + p^{2} T^{2} )^{2} \)
29$C_2^2$ \( 1 - 1357 T^{2} + p^{4} T^{4} \)
31$C_2^2$ \( 1 - 622 T^{2} + p^{4} T^{4} \)
37$C_2^2$ \( 1 - 2270 T^{2} + p^{4} T^{4} \)
41$C_2^2$ \( 1 - 2062 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 20 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 115 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6637 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 7405 T^{2} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 92 T + p^{2} T^{2} )( 1 + 92 T + p^{2} T^{2} ) \)
73$C_2$ \( ( 1 - 105 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 11182 T^{2} + p^{4} T^{4} \)
83$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2^2$ \( 1 - 3790 T^{2} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.45697148127112063319969776997, −18.32800620868143821671096034871, −17.21035229029363237188423869982, −17.08583885424158940884764644480, −16.21063509210890520760409018508, −15.44395203851106089460354228870, −14.71293824049643278009270419978, −13.66465521900764779981549730018, −13.47082475202125214301786291244, −12.80929082667917783009386997073, −12.64065192308747340816046109002, −10.84934664941281548929337477819, −10.05941444649321422619702072719, −9.709875664515623190473484465539, −9.163442841217987117557950293699, −8.008777466551688594985583029709, −6.80851237079612159424138322129, −5.65486461226492922850288157593, −5.02070792807218811212169335008, −3.10819521664665256600463056824, 3.10819521664665256600463056824, 5.02070792807218811212169335008, 5.65486461226492922850288157593, 6.80851237079612159424138322129, 8.008777466551688594985583029709, 9.163442841217987117557950293699, 9.709875664515623190473484465539, 10.05941444649321422619702072719, 10.84934664941281548929337477819, 12.64065192308747340816046109002, 12.80929082667917783009386997073, 13.47082475202125214301786291244, 13.66465521900764779981549730018, 14.71293824049643278009270419978, 15.44395203851106089460354228870, 16.21063509210890520760409018508, 17.08583885424158940884764644480, 17.21035229029363237188423869982, 18.32800620868143821671096034871, 18.45697148127112063319969776997

Graph of the $Z$-function along the critical line