L(s) = 1 | + (4.89 + 2.82i)2-s + (−14.9 − 22.4i)3-s + (15.9 + 27.7i)4-s + (202. − 116. i)5-s + (−9.58 − 152. i)6-s + (95.5 − 165. i)7-s + 181. i·8-s + (−282. + 672. i)9-s + 1.32e3·10-s + (−673. − 388. i)11-s + (384. − 773. i)12-s + (45.5 + 78.9i)13-s + (936. − 540. i)14-s + (−5.64e3 − 2.80e3i)15-s + (−512. + 886. i)16-s + 7.04e3i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.553 − 0.832i)3-s + (0.249 + 0.433i)4-s + (1.61 − 0.934i)5-s + (−0.0443 − 0.705i)6-s + (0.278 − 0.482i)7-s + 0.353i·8-s + (−0.387 + 0.921i)9-s + 1.32·10-s + (−0.505 − 0.291i)11-s + (0.222 − 0.447i)12-s + (0.0207 + 0.0359i)13-s + (0.341 − 0.197i)14-s + (−1.67 − 0.830i)15-s + (−0.125 + 0.216i)16-s + 1.43i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(0.840+0.541i)Λ(7−s)
Λ(s)=(=(18s/2ΓC(s+3)L(s)(0.840+0.541i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
0.840+0.541i
|
Analytic conductor: |
4.14097 |
Root analytic conductor: |
2.03493 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :3), 0.840+0.541i)
|
Particular Values
L(27) |
≈ |
1.98741−0.584998i |
L(21) |
≈ |
1.98741−0.584998i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.89−2.82i)T |
| 3 | 1+(14.9+22.4i)T |
good | 5 | 1+(−202.+116.i)T+(7.81e3−1.35e4i)T2 |
| 7 | 1+(−95.5+165.i)T+(−5.88e4−1.01e5i)T2 |
| 11 | 1+(673.+388.i)T+(8.85e5+1.53e6i)T2 |
| 13 | 1+(−45.5−78.9i)T+(−2.41e6+4.18e6i)T2 |
| 17 | 1−7.04e3iT−2.41e7T2 |
| 19 | 1−2.73e3T+4.70e7T2 |
| 23 | 1+(1.72e4−9.94e3i)T+(7.40e7−1.28e8i)T2 |
| 29 | 1+(−2.71e4−1.56e4i)T+(2.97e8+5.15e8i)T2 |
| 31 | 1+(−6.17e3−1.06e4i)T+(−4.43e8+7.68e8i)T2 |
| 37 | 1+2.79e4T+2.56e9T2 |
| 41 | 1+(3.74e4−2.16e4i)T+(2.37e9−4.11e9i)T2 |
| 43 | 1+(−1.92e4+3.33e4i)T+(−3.16e9−5.47e9i)T2 |
| 47 | 1+(1.43e5+8.30e4i)T+(5.38e9+9.33e9i)T2 |
| 53 | 1+5.47e4iT−2.21e10T2 |
| 59 | 1+(1.41e4−8.14e3i)T+(2.10e10−3.65e10i)T2 |
| 61 | 1+(−2.94e4+5.09e4i)T+(−2.57e10−4.46e10i)T2 |
| 67 | 1+(1.47e5+2.56e5i)T+(−4.52e10+7.83e10i)T2 |
| 71 | 1−1.57e5iT−1.28e11T2 |
| 73 | 1−8.02e4T+1.51e11T2 |
| 79 | 1+(−1.88e5+3.26e5i)T+(−1.21e11−2.10e11i)T2 |
| 83 | 1+(−7.33e5−4.23e5i)T+(1.63e11+2.83e11i)T2 |
| 89 | 1−1.12e3iT−4.96e11T2 |
| 97 | 1+(−6.75e5+1.16e6i)T+(−4.16e11−7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.29139922706735846707004970736, −16.27074516525627931739407220420, −14.03467266089762857567130013832, −13.34860981476329313118283518343, −12.28653500730699933857477124867, −10.37389348947025042140834347808, −8.252838173412415976424399969281, −6.29300855829618507063050984240, −5.19218039057125298158701569428, −1.64997347428988153635377497744,
2.60353758399536868074866720700, 5.12952550875453119040663468064, 6.34625458706468386567629492009, 9.623049250838380313456543442972, 10.47026477636543706282173826006, 11.87379381084840535983161764829, 13.70063761268388598062152130672, 14.66190269839696483640443271229, 15.99699330801760358346650753135, 17.69116123045969451275203970486