L(s) = 1 | + 11.2·3-s − 19.2·5-s + 33.9i·7-s + 45.7·9-s + (−2.03 + 120. i)11-s − 72.2i·13-s − 216.·15-s + 517. i·17-s + 411. i·19-s + 382. i·21-s + 967.·23-s − 254.·25-s − 396.·27-s − 640. i·29-s − 716.·31-s + ⋯ |
L(s) = 1 | + 1.25·3-s − 0.770·5-s + 0.692i·7-s + 0.564·9-s + (−0.0167 + 0.999i)11-s − 0.427i·13-s − 0.963·15-s + 1.79i·17-s + 1.14i·19-s + 0.866i·21-s + 1.82·23-s − 0.406·25-s − 0.544·27-s − 0.761i·29-s − 0.745·31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.0167−0.999i)Λ(5−s)
Λ(s)=(=(176s/2ΓC(s+2)L(s)(0.0167−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.0167−0.999i
|
Analytic conductor: |
18.1931 |
Root analytic conductor: |
4.26533 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :2), 0.0167−0.999i)
|
Particular Values
L(25) |
≈ |
2.052620829 |
L(21) |
≈ |
2.052620829 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(2.03−120.i)T |
good | 3 | 1−11.2T+81T2 |
| 5 | 1+19.2T+625T2 |
| 7 | 1−33.9iT−2.40e3T2 |
| 13 | 1+72.2iT−2.85e4T2 |
| 17 | 1−517.iT−8.35e4T2 |
| 19 | 1−411.iT−1.30e5T2 |
| 23 | 1−967.T+2.79e5T2 |
| 29 | 1+640.iT−7.07e5T2 |
| 31 | 1+716.T+9.23e5T2 |
| 37 | 1−1.20e3T+1.87e6T2 |
| 41 | 1+966.iT−2.82e6T2 |
| 43 | 1−2.72e3iT−3.41e6T2 |
| 47 | 1−177.T+4.87e6T2 |
| 53 | 1+4.02e3T+7.89e6T2 |
| 59 | 1−1.98e3T+1.21e7T2 |
| 61 | 1−2.39e3iT−1.38e7T2 |
| 67 | 1−2.00e3T+2.01e7T2 |
| 71 | 1+4.25e3T+2.54e7T2 |
| 73 | 1+1.28e3iT−2.83e7T2 |
| 79 | 1−1.48e3iT−3.89e7T2 |
| 83 | 1+1.01e4iT−4.74e7T2 |
| 89 | 1−5.13e3T+6.27e7T2 |
| 97 | 1−2.23e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.52865114787149798963094615201, −11.33105758207708044305945615275, −10.08403211589838880826163166553, −9.047016428847625956627586145971, −8.172309303028481452628845598075, −7.50405042698457363415400353183, −5.90159629346529467564604498699, −4.25965013181730286989820552996, −3.19120030003018836432164258892, −1.85844272296792069921832938878,
0.65421129923708536656649908242, 2.75319924338731336957866415556, 3.63890038093974606249580929413, 4.97923637518562481977075944988, 6.96066361171237420373720509666, 7.64585889014894392290185240239, 8.813265512716154201510306838310, 9.369062176092942806076700413628, 10.97389110074375160764357886651, 11.56833360103969826122378403752