Properties

Label 8-170e4-1.1-c1e4-0-0
Degree $8$
Conductor $835210000$
Sign $1$
Analytic cond. $3.39550$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 4·3-s + 10·4-s + 16·6-s + 4·7-s − 20·8-s + 8·9-s − 12·11-s − 40·12-s − 16·14-s + 35·16-s − 32·18-s − 16·21-s + 48·22-s + 80·24-s + 8·25-s − 16·27-s + 40·28-s + 4·31-s − 56·32-s + 48·33-s + 80·36-s + 4·37-s + 12·41-s + 64·42-s + 32·43-s − 120·44-s + ⋯
L(s)  = 1  − 2.82·2-s − 2.30·3-s + 5·4-s + 6.53·6-s + 1.51·7-s − 7.07·8-s + 8/3·9-s − 3.61·11-s − 11.5·12-s − 4.27·14-s + 35/4·16-s − 7.54·18-s − 3.49·21-s + 10.2·22-s + 16.3·24-s + 8/5·25-s − 3.07·27-s + 7.55·28-s + 0.718·31-s − 9.89·32-s + 8.35·33-s + 40/3·36-s + 0.657·37-s + 1.87·41-s + 9.87·42-s + 4.87·43-s − 18.0·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(3.39550\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 17^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1446367425\)
\(L(\frac12)\) \(\approx\) \(0.1446367425\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
good3$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 16 T^{3} + 31 T^{4} + 16 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + 6 T + p T^{2} )^{2}( 1 + 14 T^{2} + p^{2} T^{4} ) \)
13$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 22 T^{2} + 195 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^3$ \( 1 + 1567 T^{4} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} + 192 T^{3} - 1633 T^{4} + 192 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} - 12 T^{3} - 1138 T^{4} - 12 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 660 T^{3} + 5854 T^{4} - 660 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 - 16 T + 132 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 166 T^{2} + 11235 T^{4} - 166 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 - 22 T^{2} + 3555 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1344 T^{3} + 13583 T^{4} - 1344 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 52 T^{2} - 714 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 1056 T^{3} + 15199 T^{4} - 1056 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} - p^{2} T^{4} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1200 T^{3} + 11234 T^{4} - 1200 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 + 148 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 6 T + 115 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 768 T^{3} + 18431 T^{4} + 768 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.331093417074770181909538288357, −9.246356378994868481546662565321, −8.942457384709014871111188449552, −8.391024197250654595612922122257, −8.120643014767994056446243577361, −8.072766323650021338088375161053, −7.82142094802301665694352217739, −7.46490786699537598006106925081, −7.37616267337189092173334361843, −7.20715703613127869885283793824, −6.57809881474586779126552393297, −6.36677264876718657172552764850, −5.98718256841431981560261418285, −5.53819182592103533101144480939, −5.53805942215431286644798672492, −5.42362586164330365067503332566, −4.74485787140555317035328819439, −4.61396679101289081291319229855, −4.15558386491829335196254157590, −3.18588544431618417814849432297, −2.69736508549986738926955025885, −2.27594636417031647619080348140, −2.12881836399994994960256539840, −0.876178125641113829981671910039, −0.70177386702254961580331789737, 0.70177386702254961580331789737, 0.876178125641113829981671910039, 2.12881836399994994960256539840, 2.27594636417031647619080348140, 2.69736508549986738926955025885, 3.18588544431618417814849432297, 4.15558386491829335196254157590, 4.61396679101289081291319229855, 4.74485787140555317035328819439, 5.42362586164330365067503332566, 5.53805942215431286644798672492, 5.53819182592103533101144480939, 5.98718256841431981560261418285, 6.36677264876718657172552764850, 6.57809881474586779126552393297, 7.20715703613127869885283793824, 7.37616267337189092173334361843, 7.46490786699537598006106925081, 7.82142094802301665694352217739, 8.072766323650021338088375161053, 8.120643014767994056446243577361, 8.391024197250654595612922122257, 8.942457384709014871111188449552, 9.246356378994868481546662565321, 9.331093417074770181909538288357

Graph of the $Z$-function along the critical line