Properties

Label 8-170e4-1.1-c1e4-0-1
Degree $8$
Conductor $835210000$
Sign $1$
Analytic cond. $3.39550$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·9-s + 3·16-s + 8·19-s − 8·25-s − 8·36-s + 8·49-s − 48·59-s − 4·64-s − 16·76-s − 6·81-s + 48·89-s + 16·100-s + 24·101-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 20·169-s + 32·171-s + ⋯
L(s)  = 1  − 4-s + 4/3·9-s + 3/4·16-s + 1.83·19-s − 8/5·25-s − 4/3·36-s + 8/7·49-s − 6.24·59-s − 1/2·64-s − 1.83·76-s − 2/3·81-s + 5.08·89-s + 8/5·100-s + 2.38·101-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.53·169-s + 2.44·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(3.39550\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 17^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.182230878\)
\(L(\frac12)\) \(\approx\) \(1.182230878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 104 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 124 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.418839338644338202652010668407, −8.967506047524813963148122237658, −8.956520327368728494365539279328, −8.860554645954631556466625401263, −8.231272092882065147406641620987, −7.77265927397674281762515943603, −7.65822435266637210201028614554, −7.56179581696777197603083861310, −7.45775701579912025621558633254, −6.95699127394199851292202224631, −6.41504184010593481425340639787, −6.23266659380700618461353091116, −5.99433283283112592830123563923, −5.66876859062903956842955748051, −5.10054656720727117602642902702, −5.06086884440264440471390678977, −4.58024683313541212341029973976, −4.28697831313215297950563479453, −4.14911131052640219693930101612, −3.40772590844707343908426910388, −3.31581171376736480719605291617, −2.97024208037910435614385931099, −1.91505430413316352158022021370, −1.76197003093654825177348797755, −0.850154944955691292142113475389, 0.850154944955691292142113475389, 1.76197003093654825177348797755, 1.91505430413316352158022021370, 2.97024208037910435614385931099, 3.31581171376736480719605291617, 3.40772590844707343908426910388, 4.14911131052640219693930101612, 4.28697831313215297950563479453, 4.58024683313541212341029973976, 5.06086884440264440471390678977, 5.10054656720727117602642902702, 5.66876859062903956842955748051, 5.99433283283112592830123563923, 6.23266659380700618461353091116, 6.41504184010593481425340639787, 6.95699127394199851292202224631, 7.45775701579912025621558633254, 7.56179581696777197603083861310, 7.65822435266637210201028614554, 7.77265927397674281762515943603, 8.231272092882065147406641620987, 8.860554645954631556466625401263, 8.956520327368728494365539279328, 8.967506047524813963148122237658, 9.418839338644338202652010668407

Graph of the $Z$-function along the critical line