Properties

Label 8-17e4-1.1-c3e4-0-0
Degree $8$
Conductor $83521$
Sign $1$
Analytic cond. $1.01218$
Root an. cond. $1.00151$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 13·4-s + 28·8-s + 34·9-s + 140·13-s + 21·16-s + 112·17-s − 68·18-s − 112·19-s + 20·25-s − 280·26-s + 58·32-s − 224·34-s − 442·36-s + 224·38-s − 520·43-s + 952·47-s + 842·49-s − 40·50-s − 1.82e3·52-s − 576·53-s − 1.17e3·59-s + 759·64-s − 240·67-s − 1.45e3·68-s + 952·72-s + 1.45e3·76-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.62·4-s + 1.23·8-s + 1.25·9-s + 2.98·13-s + 0.328·16-s + 1.59·17-s − 0.890·18-s − 1.35·19-s + 4/25·25-s − 2.11·26-s + 0.320·32-s − 1.12·34-s − 2.04·36-s + 0.956·38-s − 1.84·43-s + 2.95·47-s + 2.45·49-s − 0.113·50-s − 4.85·52-s − 1.49·53-s − 2.59·59-s + 1.48·64-s − 0.437·67-s − 2.59·68-s + 1.55·72-s + 2.19·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 83521 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 83521 ^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(83521\)    =    \(17^{4}\)
Sign: $1$
Analytic conductor: \(1.01218\)
Root analytic conductor: \(1.00151\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 83521,\ (\ :3/2, 3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5787377548\)
\(L(\frac12)\) \(\approx\) \(0.5787377548\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad17$D_{4}$ \( 1 - 112 T + 382 p T^{2} - 112 p^{3} T^{3} + p^{6} T^{4} \)
good2$D_{4}$ \( ( 1 + T + p^{3} T^{2} + p^{3} T^{3} + p^{6} T^{4} )^{2} \)
3$C_2^2 \wr C_2$ \( 1 - 34 T^{2} + 1450 T^{4} - 34 p^{6} T^{6} + p^{12} T^{8} \)
5$C_2^2 \wr C_2$ \( 1 - 4 p T^{2} + 12342 T^{4} - 4 p^{7} T^{6} + p^{12} T^{8} \)
7$C_2^2 \wr C_2$ \( 1 - 842 T^{2} + 410922 T^{4} - 842 p^{6} T^{6} + p^{12} T^{8} \)
11$C_2^2 \wr C_2$ \( 1 - 1698 T^{2} + 3550826 T^{4} - 1698 p^{6} T^{6} + p^{12} T^{8} \)
13$D_{4}$ \( ( 1 - 70 T + 4002 T^{2} - 70 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 28 T + p^{3} T^{2} )^{4} \)
23$C_2^2 \wr C_2$ \( 1 - 20346 T^{2} + 209323274 T^{4} - 20346 p^{6} T^{6} + p^{12} T^{8} \)
29$C_2^2 \wr C_2$ \( 1 - 74036 T^{2} + 2514340758 T^{4} - 74036 p^{6} T^{6} + p^{12} T^{8} \)
31$C_2^2 \wr C_2$ \( 1 - 114890 T^{2} + 5074759530 T^{4} - 114890 p^{6} T^{6} + p^{12} T^{8} \)
37$C_2^2 \wr C_2$ \( 1 - 116372 T^{2} + 7903483062 T^{4} - 116372 p^{6} T^{6} + p^{12} T^{8} \)
41$C_2^2 \wr C_2$ \( 1 - 158724 T^{2} + 15178105958 T^{4} - 158724 p^{6} T^{6} + p^{12} T^{8} \)
43$D_{4}$ \( ( 1 + 260 T + 128262 T^{2} + 260 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 476 T + 257822 T^{2} - 476 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 288 T + 248662 T^{2} + 288 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 + 588 T + 335494 T^{2} + 588 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$C_2^2 \wr C_2$ \( 1 - 425396 T^{2} + 97219598358 T^{4} - 425396 p^{6} T^{6} + p^{12} T^{8} \)
67$D_{4}$ \( ( 1 + 120 T + 571334 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
71$C_2^2 \wr C_2$ \( 1 - 1379018 T^{2} + 731023514346 T^{4} - 1379018 p^{6} T^{6} + p^{12} T^{8} \)
73$C_2^2 \wr C_2$ \( 1 + 55196 T^{2} + 301853502630 T^{4} + 55196 p^{6} T^{6} + p^{12} T^{8} \)
79$C_2^2 \wr C_2$ \( 1 - 1282922 T^{2} + 849811865706 T^{4} - 1282922 p^{6} T^{6} + p^{12} T^{8} \)
83$D_{4}$ \( ( 1 + 1428 T + 1595158 T^{2} + 1428 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 994 T + 1642394 T^{2} - 994 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$C_2^2 \wr C_2$ \( 1 - 3375140 T^{2} + 4511732954310 T^{4} - 3375140 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79662102442458929136121135343, −13.64459895664640960911155622437, −13.42761283186875752180698191079, −12.80989534907016739716398128188, −12.69245070233277704580363555412, −12.28563232661045129803580875266, −11.75212381344530589661965658315, −11.10281217338752786649014441118, −10.94014436599962510429839631532, −10.30434893899211389086971043941, −10.19791111715273864048033247342, −9.709340471103488431391009543474, −9.164635252183473952165056881961, −8.716488189713775148320336662018, −8.699953750691681295823385858616, −8.325899958509834730509700289978, −7.56594401686642402426066623063, −7.24207365458814842960906234474, −6.22065577514056024710167293684, −6.16330868745957486881641457251, −5.31977091221502005946431867360, −4.37923220276666023327149617093, −4.20523770250516741168475357012, −3.46918795984664353324196041812, −1.22109800368859220164441475038, 1.22109800368859220164441475038, 3.46918795984664353324196041812, 4.20523770250516741168475357012, 4.37923220276666023327149617093, 5.31977091221502005946431867360, 6.16330868745957486881641457251, 6.22065577514056024710167293684, 7.24207365458814842960906234474, 7.56594401686642402426066623063, 8.325899958509834730509700289978, 8.699953750691681295823385858616, 8.716488189713775148320336662018, 9.164635252183473952165056881961, 9.709340471103488431391009543474, 10.19791111715273864048033247342, 10.30434893899211389086971043941, 10.94014436599962510429839631532, 11.10281217338752786649014441118, 11.75212381344530589661965658315, 12.28563232661045129803580875266, 12.69245070233277704580363555412, 12.80989534907016739716398128188, 13.42761283186875752180698191079, 13.64459895664640960911155622437, 13.79662102442458929136121135343

Graph of the $Z$-function along the critical line