Properties

Label 4-1155e2-1.1-c0e2-0-1
Degree $4$
Conductor $1334025$
Sign $1$
Analytic cond. $0.332260$
Root an. cond. $0.759223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 9-s + 2·11-s + 3·16-s − 25-s − 4·29-s − 2·36-s + 4·44-s − 49-s + 4·64-s + 81-s − 2·99-s − 2·100-s − 8·116-s + 3·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + ⋯
L(s)  = 1  + 2·4-s − 9-s + 2·11-s + 3·16-s − 25-s − 4·29-s − 2·36-s + 4·44-s − 49-s + 4·64-s + 81-s − 2·99-s − 2·100-s − 8·116-s + 3·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1334025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1334025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1334025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(0.332260\)
Root analytic conductor: \(0.759223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1334025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.713336548\)
\(L(\frac12)\) \(\approx\) \(1.713336548\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$ \( ( 1 + T )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23467578696084954665378544818, −9.625876145539839012583007961089, −9.527384056467353278988998414419, −9.028362675597971356073101626326, −8.581791916309551491610839674765, −7.894339687283806698440031033957, −7.75499352573368707785935945192, −7.25569971866949852766409564524, −6.78069025635358036221574517904, −6.58318811242114638801919333938, −5.88377385981323561375903562525, −5.78551983750898397389696896877, −5.47183495480473603198169839811, −4.51667698211988893014933190663, −3.72476401610692384551673508445, −3.60117938565520584711105417193, −3.11752923669926194729028171336, −2.19347572953911401320311710685, −1.94184654146782798660644617949, −1.35306713622553753215455472887, 1.35306713622553753215455472887, 1.94184654146782798660644617949, 2.19347572953911401320311710685, 3.11752923669926194729028171336, 3.60117938565520584711105417193, 3.72476401610692384551673508445, 4.51667698211988893014933190663, 5.47183495480473603198169839811, 5.78551983750898397389696896877, 5.88377385981323561375903562525, 6.58318811242114638801919333938, 6.78069025635358036221574517904, 7.25569971866949852766409564524, 7.75499352573368707785935945192, 7.894339687283806698440031033957, 8.581791916309551491610839674765, 9.028362675597971356073101626326, 9.527384056467353278988998414419, 9.625876145539839012583007961089, 10.23467578696084954665378544818

Graph of the $Z$-function along the critical line