Properties

Label 4-11e2-1.1-c3e2-0-0
Degree $4$
Conductor $121$
Sign $1$
Analytic cond. $0.421228$
Root an. cond. $0.805618$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s − 10·4-s + 2·5-s − 4·6-s + 20·7-s − 32·8-s − 3·9-s + 4·10-s − 22·11-s + 20·12-s + 80·13-s + 40·14-s − 4·15-s + 44·16-s − 124·17-s − 6·18-s + 72·19-s − 20·20-s − 40·21-s − 44·22-s − 98·23-s + 64·24-s − 55·25-s + 160·26-s − 34·27-s − 200·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.384·3-s − 5/4·4-s + 0.178·5-s − 0.272·6-s + 1.07·7-s − 1.41·8-s − 1/9·9-s + 0.126·10-s − 0.603·11-s + 0.481·12-s + 1.70·13-s + 0.763·14-s − 0.0688·15-s + 0.687·16-s − 1.76·17-s − 0.0785·18-s + 0.869·19-s − 0.223·20-s − 0.415·21-s − 0.426·22-s − 0.888·23-s + 0.544·24-s − 0.439·25-s + 1.20·26-s − 0.242·27-s − 1.34·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $1$
Analytic conductor: \(0.421228\)
Root analytic conductor: \(0.805618\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 121,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8380992720\)
\(L(\frac12)\) \(\approx\) \(0.8380992720\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 - p T + 7 p T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
3$D_{4}$ \( 1 + 2 T + 7 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 2 T + 59 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 20 T + 738 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 80 T + 4794 T^{2} - 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 124 T + 13238 T^{2} + 124 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 72 T + 4214 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 98 T + 22847 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 144 T + 44554 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 34 T + 57519 T^{2} + 34 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 54 T + 101843 T^{2} - 54 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 536 T + 209618 T^{2} - 536 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 60 T + 159146 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 272 T + 182942 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 492 T + 348862 T^{2} + 492 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 634 T + 458975 T^{2} - 634 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 840 T + 528794 T^{2} - 840 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 754 T + 742455 T^{2} - 754 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 678 T + 813415 T^{2} + 678 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 400 T + 160962 T^{2} + 400 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 4 p T - 279966 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 468 T + 1155130 T^{2} - 468 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1842 T + 1935427 T^{2} + 1842 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 2194 T + 2966547 T^{2} - 2194 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.86400651781384717306399183390, −19.98272888814166802692057074899, −18.95082872831269086040641176420, −18.07786919972305181705348371154, −17.74965087372963331749051957749, −17.67802746306553362637184316339, −16.06159423926900669861311921151, −15.70426635999610925768034563766, −14.45413212802334498598783244085, −14.09492608114868723018686830721, −13.23394761241722868999602498309, −12.94543933526161124466296837781, −11.54019096455172857387002928910, −11.08380472054021309562065233191, −9.795879747848764729591001837096, −8.738362642763152216189473172240, −8.090000841979261224322862516068, −6.16039971848470745442367419454, −5.12519565114525393474177867591, −4.10903776582739696739959352561, 4.10903776582739696739959352561, 5.12519565114525393474177867591, 6.16039971848470745442367419454, 8.090000841979261224322862516068, 8.738362642763152216189473172240, 9.795879747848764729591001837096, 11.08380472054021309562065233191, 11.54019096455172857387002928910, 12.94543933526161124466296837781, 13.23394761241722868999602498309, 14.09492608114868723018686830721, 14.45413212802334498598783244085, 15.70426635999610925768034563766, 16.06159423926900669861311921151, 17.67802746306553362637184316339, 17.74965087372963331749051957749, 18.07786919972305181705348371154, 18.95082872831269086040641176420, 19.98272888814166802692057074899, 20.86400651781384717306399183390

Graph of the $Z$-function along the critical line