Properties

Label 6-1-1.1-c35e3-0-0
Degree $6$
Conductor $1$
Sign $1$
Analytic cond. $467.200$
Root an. cond. $2.78559$
Motivic weight $35$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.39e5·2-s − 1.04e8·3-s − 2.43e10·4-s + 8.92e11·5-s − 1.46e13·6-s + 8.78e14·7-s + 1.53e15·8-s + 5.49e15·9-s + 1.24e17·10-s − 1.15e18·11-s + 2.55e18·12-s − 6.21e19·13-s + 1.22e20·14-s − 9.36e19·15-s + 1.32e21·16-s − 3.93e21·17-s + 7.67e20·18-s − 3.23e22·19-s − 2.17e22·20-s − 9.21e22·21-s − 1.61e23·22-s − 5.14e23·23-s − 1.60e23·24-s − 3.64e24·25-s − 8.67e24·26-s + 1.06e25·27-s − 2.14e25·28-s + ⋯
L(s)  = 1  + 0.753·2-s − 0.468·3-s − 0.709·4-s + 0.523·5-s − 0.353·6-s + 1.42·7-s + 0.240·8-s + 0.109·9-s + 0.394·10-s − 0.690·11-s + 0.332·12-s − 1.99·13-s + 1.07·14-s − 0.245·15-s + 1.11·16-s − 1.15·17-s + 0.0827·18-s − 1.35·19-s − 0.371·20-s − 0.669·21-s − 0.520·22-s − 0.761·23-s − 0.112·24-s − 1.25·25-s − 1.50·26-s + 0.954·27-s − 1.01·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(36-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s+35/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(467.200\)
Root analytic conductor: \(2.78559\)
Motivic weight: \(35\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 1,\ (\ :35/2, 35/2, 35/2),\ 1)\)

Particular Values

\(L(18)\) \(\approx\) \(1.428702308\)
\(L(\frac12)\) \(\approx\) \(1.428702308\)
\(L(\frac{37}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
good2$S_4\times C_2$ \( 1 - 17457 p^{3} T + 10710663 p^{12} T^{2} - 5276065965 p^{21} T^{3} + 10710663 p^{47} T^{4} - 17457 p^{73} T^{5} + p^{105} T^{6} \)
3$S_4\times C_2$ \( 1 + 11652812 p^{2} T + 838400140897 p^{8} T^{2} - 248129113043430520 p^{16} T^{3} + 838400140897 p^{43} T^{4} + 11652812 p^{72} T^{5} + p^{105} T^{6} \)
5$S_4\times C_2$ \( 1 - 178530410802 p T + \)\(14\!\cdots\!83\)\( p^{5} T^{2} - \)\(16\!\cdots\!04\)\( p^{10} T^{3} + \)\(14\!\cdots\!83\)\( p^{40} T^{4} - 178530410802 p^{71} T^{5} + p^{105} T^{6} \)
7$S_4\times C_2$ \( 1 - 125488878478008 p T + \)\(36\!\cdots\!51\)\( p^{3} T^{2} - \)\(54\!\cdots\!00\)\( p^{6} T^{3} + \)\(36\!\cdots\!51\)\( p^{38} T^{4} - 125488878478008 p^{71} T^{5} + p^{105} T^{6} \)
11$S_4\times C_2$ \( 1 + 105267766231817004 p T + \)\(49\!\cdots\!15\)\( p^{3} T^{2} + \)\(31\!\cdots\!80\)\( p^{5} T^{3} + \)\(49\!\cdots\!15\)\( p^{38} T^{4} + 105267766231817004 p^{71} T^{5} + p^{105} T^{6} \)
13$S_4\times C_2$ \( 1 + 62139610550998650558 T + \)\(27\!\cdots\!79\)\( p T^{2} + \)\(55\!\cdots\!80\)\( p^{3} T^{3} + \)\(27\!\cdots\!79\)\( p^{36} T^{4} + 62139610550998650558 p^{70} T^{5} + p^{105} T^{6} \)
17$S_4\times C_2$ \( 1 + \)\(23\!\cdots\!82\)\( p T + \)\(11\!\cdots\!47\)\( p^{2} T^{2} + \)\(17\!\cdots\!20\)\( p^{3} T^{3} + \)\(11\!\cdots\!47\)\( p^{37} T^{4} + \)\(23\!\cdots\!82\)\( p^{71} T^{5} + p^{105} T^{6} \)
19$S_4\times C_2$ \( 1 + \)\(32\!\cdots\!40\)\( T + \)\(83\!\cdots\!63\)\( p T^{2} + \)\(10\!\cdots\!20\)\( p^{2} T^{3} + \)\(83\!\cdots\!63\)\( p^{36} T^{4} + \)\(32\!\cdots\!40\)\( p^{70} T^{5} + p^{105} T^{6} \)
23$S_4\times C_2$ \( 1 + \)\(22\!\cdots\!96\)\( p T + \)\(15\!\cdots\!53\)\( p^{2} T^{2} + \)\(21\!\cdots\!20\)\( p^{3} T^{3} + \)\(15\!\cdots\!53\)\( p^{37} T^{4} + \)\(22\!\cdots\!96\)\( p^{71} T^{5} + p^{105} T^{6} \)
29$S_4\times C_2$ \( 1 + \)\(13\!\cdots\!90\)\( p T + \)\(36\!\cdots\!67\)\( p^{2} T^{2} + \)\(37\!\cdots\!20\)\( p^{3} T^{3} + \)\(36\!\cdots\!67\)\( p^{37} T^{4} + \)\(13\!\cdots\!90\)\( p^{71} T^{5} + p^{105} T^{6} \)
31$S_4\times C_2$ \( 1 - \)\(33\!\cdots\!76\)\( p T + \)\(48\!\cdots\!65\)\( p^{2} T^{2} - \)\(10\!\cdots\!20\)\( p^{3} T^{3} + \)\(48\!\cdots\!65\)\( p^{37} T^{4} - \)\(33\!\cdots\!76\)\( p^{71} T^{5} + p^{105} T^{6} \)
37$S_4\times C_2$ \( 1 - \)\(24\!\cdots\!06\)\( T + \)\(58\!\cdots\!63\)\( T^{2} - \)\(17\!\cdots\!20\)\( T^{3} + \)\(58\!\cdots\!63\)\( p^{35} T^{4} - \)\(24\!\cdots\!06\)\( p^{70} T^{5} + p^{105} T^{6} \)
41$S_4\times C_2$ \( 1 - \)\(57\!\cdots\!66\)\( p T + \)\(83\!\cdots\!15\)\( T^{2} - \)\(12\!\cdots\!20\)\( T^{3} + \)\(83\!\cdots\!15\)\( p^{35} T^{4} - \)\(57\!\cdots\!66\)\( p^{71} T^{5} + p^{105} T^{6} \)
43$S_4\times C_2$ \( 1 + \)\(47\!\cdots\!08\)\( T + \)\(45\!\cdots\!57\)\( T^{2} + \)\(14\!\cdots\!00\)\( T^{3} + \)\(45\!\cdots\!57\)\( p^{35} T^{4} + \)\(47\!\cdots\!08\)\( p^{70} T^{5} + p^{105} T^{6} \)
47$S_4\times C_2$ \( 1 - \)\(16\!\cdots\!56\)\( T + \)\(69\!\cdots\!53\)\( T^{2} - \)\(62\!\cdots\!60\)\( T^{3} + \)\(69\!\cdots\!53\)\( p^{35} T^{4} - \)\(16\!\cdots\!56\)\( p^{70} T^{5} + p^{105} T^{6} \)
53$S_4\times C_2$ \( 1 + \)\(16\!\cdots\!58\)\( T + \)\(28\!\cdots\!67\)\( T^{2} + \)\(29\!\cdots\!80\)\( T^{3} + \)\(28\!\cdots\!67\)\( p^{35} T^{4} + \)\(16\!\cdots\!58\)\( p^{70} T^{5} + p^{105} T^{6} \)
59$S_4\times C_2$ \( 1 - \)\(43\!\cdots\!80\)\( T + \)\(26\!\cdots\!97\)\( T^{2} - \)\(72\!\cdots\!40\)\( T^{3} + \)\(26\!\cdots\!97\)\( p^{35} T^{4} - \)\(43\!\cdots\!80\)\( p^{70} T^{5} + p^{105} T^{6} \)
61$S_4\times C_2$ \( 1 - \)\(23\!\cdots\!06\)\( T + \)\(92\!\cdots\!15\)\( T^{2} - \)\(14\!\cdots\!20\)\( T^{3} + \)\(92\!\cdots\!15\)\( p^{35} T^{4} - \)\(23\!\cdots\!06\)\( p^{70} T^{5} + p^{105} T^{6} \)
67$S_4\times C_2$ \( 1 + \)\(18\!\cdots\!44\)\( T + \)\(27\!\cdots\!33\)\( T^{2} + \)\(29\!\cdots\!60\)\( T^{3} + \)\(27\!\cdots\!33\)\( p^{35} T^{4} + \)\(18\!\cdots\!44\)\( p^{70} T^{5} + p^{105} T^{6} \)
71$S_4\times C_2$ \( 1 - \)\(34\!\cdots\!56\)\( T + \)\(16\!\cdots\!65\)\( T^{2} - \)\(40\!\cdots\!20\)\( T^{3} + \)\(16\!\cdots\!65\)\( p^{35} T^{4} - \)\(34\!\cdots\!56\)\( p^{70} T^{5} + p^{105} T^{6} \)
73$S_4\times C_2$ \( 1 + \)\(28\!\cdots\!58\)\( T + \)\(22\!\cdots\!87\)\( T^{2} + \)\(11\!\cdots\!40\)\( T^{3} + \)\(22\!\cdots\!87\)\( p^{35} T^{4} + \)\(28\!\cdots\!58\)\( p^{70} T^{5} + p^{105} T^{6} \)
79$S_4\times C_2$ \( 1 + \)\(42\!\cdots\!60\)\( T + \)\(17\!\cdots\!97\)\( T^{2} + \)\(13\!\cdots\!80\)\( T^{3} + \)\(17\!\cdots\!97\)\( p^{35} T^{4} + \)\(42\!\cdots\!60\)\( p^{70} T^{5} + p^{105} T^{6} \)
83$S_4\times C_2$ \( 1 - \)\(14\!\cdots\!92\)\( T + \)\(11\!\cdots\!97\)\( T^{2} - \)\(54\!\cdots\!80\)\( T^{3} + \)\(11\!\cdots\!97\)\( p^{35} T^{4} - \)\(14\!\cdots\!92\)\( p^{70} T^{5} + p^{105} T^{6} \)
89$S_4\times C_2$ \( 1 - \)\(30\!\cdots\!70\)\( T + \)\(80\!\cdots\!47\)\( T^{2} - \)\(11\!\cdots\!60\)\( T^{3} + \)\(80\!\cdots\!47\)\( p^{35} T^{4} - \)\(30\!\cdots\!70\)\( p^{70} T^{5} + p^{105} T^{6} \)
97$S_4\times C_2$ \( 1 + \)\(10\!\cdots\!94\)\( T + \)\(12\!\cdots\!03\)\( T^{2} + \)\(72\!\cdots\!40\)\( T^{3} + \)\(12\!\cdots\!03\)\( p^{35} T^{4} + \)\(10\!\cdots\!94\)\( p^{70} T^{5} + p^{105} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.60990521007096499237175467177, −20.90277113678176266986213773335, −19.84115990496816626692568244831, −19.22014790230308983267427916080, −18.00626150863511425985242461230, −17.59830144349165301023594214509, −17.16519091384425771067062733987, −16.11351508686302067000630521883, −14.67016831171737410675322590588, −14.63850500192579912510421319527, −13.54187465949206101269929955780, −13.05924299969805232161932275817, −12.14124545628775680868267838282, −11.10643246241256940705304121290, −10.34826311131646356683386295159, −9.459703826379898497888748758919, −8.157521796120929573693857359706, −7.56742165052681597633141970493, −6.18932512378858861994327713434, −4.94822276660157313077474188750, −4.84357168970594102502750076522, −4.13950803345000955418253124047, −2.28810375041348958159043620596, −1.83589775632061795320516641947, −0.37295365828732270267756485604, 0.37295365828732270267756485604, 1.83589775632061795320516641947, 2.28810375041348958159043620596, 4.13950803345000955418253124047, 4.84357168970594102502750076522, 4.94822276660157313077474188750, 6.18932512378858861994327713434, 7.56742165052681597633141970493, 8.157521796120929573693857359706, 9.459703826379898497888748758919, 10.34826311131646356683386295159, 11.10643246241256940705304121290, 12.14124545628775680868267838282, 13.05924299969805232161932275817, 13.54187465949206101269929955780, 14.63850500192579912510421319527, 14.67016831171737410675322590588, 16.11351508686302067000630521883, 17.16519091384425771067062733987, 17.59830144349165301023594214509, 18.00626150863511425985242461230, 19.22014790230308983267427916080, 19.84115990496816626692568244831, 20.90277113678176266986213773335, 21.60990521007096499237175467177

Graph of the $Z$-function along the critical line