Properties

Label 2-1-1.1-c99-0-4
Degree $2$
Conductor $1$
Sign $1$
Analytic cond. $62.0676$
Root an. cond. $7.87830$
Motivic weight $99$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.31e14·2-s − 2.11e23·3-s − 9.86e28·4-s + 5.46e34·5-s + 1.54e38·6-s − 9.42e41·7-s + 5.35e44·8-s − 1.27e47·9-s − 3.99e49·10-s + 6.80e51·11-s + 2.08e52·12-s + 1.27e55·13-s + 6.89e56·14-s − 1.15e58·15-s − 3.29e59·16-s + 1.40e60·17-s + 9.29e61·18-s − 1.83e63·19-s − 5.38e63·20-s + 1.99e65·21-s − 4.98e66·22-s + 7.80e66·23-s − 1.13e68·24-s + 1.40e69·25-s − 9.30e69·26-s + 6.31e70·27-s + 9.29e70·28-s + ⋯
L(s)  = 1  − 0.918·2-s − 0.510·3-s − 0.155·4-s + 1.37·5-s + 0.468·6-s − 1.38·7-s + 1.06·8-s − 0.739·9-s − 1.26·10-s + 1.92·11-s + 0.0794·12-s + 0.921·13-s + 1.27·14-s − 0.701·15-s − 0.820·16-s + 0.174·17-s + 0.679·18-s − 0.920·19-s − 0.214·20-s + 0.707·21-s − 1.76·22-s + 0.306·23-s − 0.541·24-s + 0.890·25-s − 0.846·26-s + 0.887·27-s + 0.215·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s) \, L(s)\cr=\mathstrut & \,\Lambda(100-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\C}(s+99/2) \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(62.0676\)
Root analytic conductor: \(7.87830\)
Motivic weight: \(99\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1,\ (\ :99/2),\ 1)\)

Particular Values

\(L(50)\) \(\approx\) \(0.9548384322\)
\(L(\frac12)\) \(\approx\) \(0.9548384322\)
\(L(\frac{101}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
good2 \( 1 + 7.31e14T + 6.33e29T^{2} \)
3 \( 1 + 2.11e23T + 1.71e47T^{2} \)
5 \( 1 - 5.46e34T + 1.57e69T^{2} \)
7 \( 1 + 9.42e41T + 4.62e83T^{2} \)
11 \( 1 - 6.80e51T + 1.25e103T^{2} \)
13 \( 1 - 1.27e55T + 1.90e110T^{2} \)
17 \( 1 - 1.40e60T + 6.52e121T^{2} \)
19 \( 1 + 1.83e63T + 3.95e126T^{2} \)
23 \( 1 - 7.80e66T + 6.47e134T^{2} \)
29 \( 1 + 4.49e72T + 5.98e144T^{2} \)
31 \( 1 + 6.78e73T + 4.41e147T^{2} \)
37 \( 1 - 1.72e77T + 1.78e155T^{2} \)
41 \( 1 + 3.13e78T + 4.63e159T^{2} \)
43 \( 1 - 1.67e80T + 5.16e161T^{2} \)
47 \( 1 - 5.53e82T + 3.44e165T^{2} \)
53 \( 1 + 9.83e84T + 5.05e170T^{2} \)
59 \( 1 + 2.85e87T + 2.06e175T^{2} \)
61 \( 1 + 7.36e87T + 5.59e176T^{2} \)
67 \( 1 - 2.22e90T + 6.04e180T^{2} \)
71 \( 1 - 7.03e91T + 1.88e183T^{2} \)
73 \( 1 - 1.65e92T + 2.94e184T^{2} \)
79 \( 1 + 2.18e93T + 7.32e187T^{2} \)
83 \( 1 + 6.95e94T + 9.74e189T^{2} \)
89 \( 1 - 8.71e95T + 9.76e192T^{2} \)
97 \( 1 - 1.85e98T + 4.90e196T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16799565798148997783595569686, −12.93833720660445183875023419923, −10.94469032765473633436760393852, −9.503846208621550766386133150816, −8.990317290444552722219284196692, −6.60895979457736553330868038347, −5.79436402776081176624794938184, −3.72735732523573372038775861610, −1.80804204372360563700184258015, −0.63471210310869948932054908978, 0.63471210310869948932054908978, 1.80804204372360563700184258015, 3.72735732523573372038775861610, 5.79436402776081176624794938184, 6.60895979457736553330868038347, 8.990317290444552722219284196692, 9.503846208621550766386133150816, 10.94469032765473633436760393852, 12.93833720660445183875023419923, 14.16799565798148997783595569686

Graph of the $Z$-function along the critical line