Properties

Degree 2
Conductor $ 2 \cdot 5 $
Sign $-1$
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  − 0.707·2-s + 1.59·3-s + 0.5·4-s − 0.447·5-s − 1.12·6-s − 0.356·7-s − 0.353·8-s + 1.54·9-s + 0.316·10-s − 0.667·11-s + 0.798·12-s + 1.52·13-s + 0.252·14-s − 0.714·15-s + 0.250·16-s − 1.14·17-s − 1.09·18-s − 1.87·19-s − 0.223·20-s − 0.569·21-s + 0.472·22-s + 0.204·23-s − 0.564·24-s + 0.200·25-s − 1.08·26-s + 0.876·27-s − 0.178·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut & 10 ^{s/2} \, \Gamma_{\R}(s+(1 + 15.9i)) \, \Gamma_{\R}(s+(1 - 15.9i)) \, L(s,f)\cr =\mathstrut & -\, \Lambda(1-s,f) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(10\)    =    \(2 \cdot 5\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(2,\ 10,\ (1 + 15.9608513054i, 1 - 15.9608513054i:\ ),\ -1)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line