Properties

Degree 2
Conductor $ 2 \cdot 5 $
Sign $1$
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  − 0.707·2-s − 1.58·3-s + 0.5·4-s + 0.447·5-s + 1.11·6-s − 0.798·7-s − 0.353·8-s + 1.49·9-s − 0.316·10-s + 1.99·11-s − 0.790·12-s + 0.221·13-s + 0.564·14-s − 0.706·15-s + 0.250·16-s − 0.651·17-s − 1.05·18-s − 1.57·19-s + 0.223·20-s + 1.26·21-s − 1.40·22-s − 1.25·23-s + 0.558·24-s + 0.200·25-s − 0.156·26-s − 0.788·27-s − 0.399·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut & 10 ^{s/2} \, \Gamma_{\R}(s+(1 + 14.9i)) \, \Gamma_{\R}(s+(1 - 14.9i)) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(10\)    =    \(2 \cdot 5\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(2,\ 10,\ (1 + 14.9238928466i, 1 - 14.9238928466i:\ ),\ 1)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line