Properties

Degree 2
Conductor $ 2 \cdot 5 $
Sign $-1$
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  + 0.707·2-s + 0.189·3-s + 0.5·4-s + 0.447·5-s + 0.133·6-s − 0.440·7-s + 0.353·8-s − 0.964·9-s + 0.316·10-s − 0.0577·11-s + 0.0946·12-s + 0.604·13-s − 0.311·14-s + 0.0846·15-s + 0.250·16-s − 0.860·17-s − 0.681·18-s + 0.803·19-s + 0.223·20-s − 0.0833·21-s − 0.0408·22-s + 0.107·23-s + 0.0669·24-s + 0.200·25-s + 0.427·26-s − 0.371·27-s − 0.220·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,f)=\mathstrut & 10 ^{s/2} \, \Gamma_{\R}(s+(1 + 29.2i)) \, \Gamma_{\R}(s+(1 - 29.2i)) \, L(s,f)\cr =\mathstrut & -\, \Lambda(1-s,f) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(10\)    =    \(2 \cdot 5\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(2,\ 10,\ (1 + 29.2898614134i, 1 - 29.2898614134i:\ ),\ -1)$

Euler product

\[\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line