Properties

Degree 2
Conductor 10
Sign $-1$
Self-dual yes

Related objects

Nearby objects

previous$L(s,f_{\text prev}$)
next$L(s,f_{\text next})$

Downloads

Dirichlet series

$L(s,f)$  = 1  + 0.707·2-s − 1.663·3-s + 0.5·4-s − 0.447·5-s − 1.176·6-s − 1.126·7-s + 0.353·8-s + 1.766·9-s − 0.316·10-s − 0.438·11-s − 0.831·12-s + 0.224·13-s − 0.796·14-s + 0.743·15-s + 0.25·16-s − 1.129·17-s + 1.248·18-s − 0.340·19-s − 0.223·20-s + 1.872·21-s − 0.310·22-s − 0.839·23-s − 0.588·24-s + 0.200·25-s + 0.158·26-s − 1.274·27-s − 0.563·28-s + ⋯

Functional equation

\[\begin{align} \Lambda(s,f)=\mathstrut & 10 ^{s/2} \Gamma_{\R}(s+4.582i) \Gamma_{\R}(s-4.582 i) \cdot L(s,f)\cr =\mathstrut & - \Lambda(1-s,f) \end{align} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(10\)    =    \(2 \cdot 5\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(2,\ 10,\ (4.582361503127025i, -4.582361503127025i:\ ),\ -1)$

Euler product

\[\begin{equation} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1} \end{equation}\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line