Properties

Label 4-10496-1.1-c1e2-0-1
Degree $4$
Conductor $10496$
Sign $-1$
Analytic cond. $0.669234$
Root an. cond. $0.904470$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·9-s − 10·11-s + 2·19-s − 2·25-s + 10·27-s + 20·33-s − 5·41-s − 4·43-s + 10·49-s − 4·57-s − 6·67-s − 20·73-s + 4·75-s − 5·81-s − 8·89-s + 12·97-s + 20·99-s + 8·107-s − 12·113-s + 54·121-s + 10·123-s + 127-s + 8·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1.15·3-s − 2/3·9-s − 3.01·11-s + 0.458·19-s − 2/5·25-s + 1.92·27-s + 3.48·33-s − 0.780·41-s − 0.609·43-s + 10/7·49-s − 0.529·57-s − 0.733·67-s − 2.34·73-s + 0.461·75-s − 5/9·81-s − 0.847·89-s + 1.21·97-s + 2.01·99-s + 0.773·107-s − 1.12·113-s + 4.90·121-s + 0.901·123-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10496\)    =    \(2^{8} \cdot 41\)
Sign: $-1$
Analytic conductor: \(0.669234\)
Root analytic conductor: \(0.904470\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 10496,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
41$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 6 T + p T^{2} ) \)
good3$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15662733958893988623597716409, −10.59825324071322855057939230554, −10.39235113006262168747798579527, −9.780666496112151246286232763050, −8.763473008018823706570908594628, −8.333302521823547348457406789793, −7.67147930914584082626489197721, −7.18157266326531913255505905120, −6.14734264865620643600828997855, −5.60340733293681562859559985798, −5.27924781885721236182136302857, −4.64179799435541320220033101215, −3.17814006712154085473407665632, −2.49110577870648363746397951149, 0, 2.49110577870648363746397951149, 3.17814006712154085473407665632, 4.64179799435541320220033101215, 5.27924781885721236182136302857, 5.60340733293681562859559985798, 6.14734264865620643600828997855, 7.18157266326531913255505905120, 7.67147930914584082626489197721, 8.333302521823547348457406789793, 8.763473008018823706570908594628, 9.780666496112151246286232763050, 10.39235113006262168747798579527, 10.59825324071322855057939230554, 11.15662733958893988623597716409

Graph of the $Z$-function along the critical line