Properties

Label 4-968832-1.1-c1e2-0-4
Degree $4$
Conductor $968832$
Sign $1$
Analytic cond. $61.7735$
Root an. cond. $2.80350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 3·9-s + 12·11-s + 2·12-s + 16-s + 6·17-s − 3·18-s − 2·19-s − 12·22-s − 2·24-s − 25-s + 4·27-s − 32-s + 24·33-s − 6·34-s + 3·36-s + 2·38-s − 18·41-s − 14·43-s + 12·44-s + 2·48-s + 11·49-s + 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 9-s + 3.61·11-s + 0.577·12-s + 1/4·16-s + 1.45·17-s − 0.707·18-s − 0.458·19-s − 2.55·22-s − 0.408·24-s − 1/5·25-s + 0.769·27-s − 0.176·32-s + 4.17·33-s − 1.02·34-s + 1/2·36-s + 0.324·38-s − 2.81·41-s − 2.13·43-s + 1.80·44-s + 0.288·48-s + 11/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968832 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968832 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(968832\)    =    \(2^{7} \cdot 3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(61.7735\)
Root analytic conductor: \(2.80350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 968832,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.312426779\)
\(L(\frac12)\) \(\approx\) \(3.312426779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( ( 1 - T )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.443424828695416122862075486969, −7.83268146353528315500962133734, −7.12631399441854341066044092332, −6.97231192698558333316844758012, −6.59736023434001425757802101345, −6.16301211985693377316145343724, −5.57702324808249193627299681426, −4.85512283254279582558561488230, −4.21169573330828371132724290124, −3.70435541571971822099748167322, −3.52011913238331407509265098559, −2.96184119851211848322696372329, −1.85413035668575826478952275072, −1.63272357936029339660940403376, −0.999047580680805407462955288675, 0.999047580680805407462955288675, 1.63272357936029339660940403376, 1.85413035668575826478952275072, 2.96184119851211848322696372329, 3.52011913238331407509265098559, 3.70435541571971822099748167322, 4.21169573330828371132724290124, 4.85512283254279582558561488230, 5.57702324808249193627299681426, 6.16301211985693377316145343724, 6.59736023434001425757802101345, 6.97231192698558333316844758012, 7.12631399441854341066044092332, 7.83268146353528315500962133734, 8.443424828695416122862075486969

Graph of the $Z$-function along the critical line