Properties

Label 4-2254-1.1-c1e2-0-0
Degree $4$
Conductor $2254$
Sign $1$
Analytic cond. $0.143716$
Root an. cond. $0.615711$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·8-s + 2·9-s − 8·11-s + 16-s − 9·23-s + 2·25-s + 4·29-s − 4·32-s − 2·36-s + 4·37-s + 8·44-s − 7·49-s + 12·53-s + 3·64-s + 8·67-s + 8·71-s + 4·72-s + 16·79-s − 5·81-s − 16·88-s + 9·92-s − 16·99-s − 2·100-s + 16·107-s − 4·109-s − 20·113-s + ⋯
L(s)  = 1  − 1/2·4-s + 0.707·8-s + 2/3·9-s − 2.41·11-s + 1/4·16-s − 1.87·23-s + 2/5·25-s + 0.742·29-s − 0.707·32-s − 1/3·36-s + 0.657·37-s + 1.20·44-s − 49-s + 1.64·53-s + 3/8·64-s + 0.977·67-s + 0.949·71-s + 0.471·72-s + 1.80·79-s − 5/9·81-s − 1.70·88-s + 0.938·92-s − 1.60·99-s − 1/5·100-s + 1.54·107-s − 0.383·109-s − 1.88·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(0.143716\)
Root analytic conductor: \(0.615711\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2254,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6141994056\)
\(L(\frac12)\) \(\approx\) \(0.6141994056\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + T + p T^{2} ) \)
7$C_2$ \( 1 + p T^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 8 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 142 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09934366291682023430039040733, −12.79059384436159602278559496449, −12.13240782852281376960972270117, −11.21358949587687420939859217756, −10.46423130684701605502983097995, −10.20840258377203912940977449231, −9.638040636338315315306407369116, −8.536015900210194161224770261535, −7.901065581287480949315837392901, −7.59842438501720390720393292269, −6.51957365678974001666102365983, −5.43404419368717190931601781158, −4.86525372116713891728704442672, −3.91672060964165073859091986551, −2.41431212470637847961403026107, 2.41431212470637847961403026107, 3.91672060964165073859091986551, 4.86525372116713891728704442672, 5.43404419368717190931601781158, 6.51957365678974001666102365983, 7.59842438501720390720393292269, 7.901065581287480949315837392901, 8.536015900210194161224770261535, 9.638040636338315315306407369116, 10.20840258377203912940977449231, 10.46423130684701605502983097995, 11.21358949587687420939859217756, 12.13240782852281376960972270117, 12.79059384436159602278559496449, 13.09934366291682023430039040733

Graph of the $Z$-function along the critical line