Properties

Label 4-13132-1.1-c1e2-0-0
Degree $4$
Conductor $13132$
Sign $1$
Analytic cond. $0.837307$
Root an. cond. $0.956579$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 7-s − 4·8-s + 9-s + 2·14-s + 5·16-s − 2·18-s + 9·23-s + 8·25-s − 3·28-s − 6·32-s + 3·36-s + 4·37-s + 7·43-s − 18·46-s − 6·49-s − 16·50-s − 18·53-s + 4·56-s − 63-s + 7·64-s + 15·67-s + 3·71-s − 4·72-s − 8·74-s − 2·79-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.377·7-s − 1.41·8-s + 1/3·9-s + 0.534·14-s + 5/4·16-s − 0.471·18-s + 1.87·23-s + 8/5·25-s − 0.566·28-s − 1.06·32-s + 1/2·36-s + 0.657·37-s + 1.06·43-s − 2.65·46-s − 6/7·49-s − 2.26·50-s − 2.47·53-s + 0.534·56-s − 0.125·63-s + 7/8·64-s + 1.83·67-s + 0.356·71-s − 0.471·72-s − 0.929·74-s − 0.225·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13132 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13132 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13132\)    =    \(2^{2} \cdot 7^{2} \cdot 67\)
Sign: $1$
Analytic conductor: \(0.837307\)
Root analytic conductor: \(0.956579\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 13132,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5711183854\)
\(L(\frac12)\) \(\approx\) \(0.5711183854\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + T + p T^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 14 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 83 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 148 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.06242556734797633316617654325, −10.75142325686499068465966747941, −10.03580089431797300060009499074, −9.496854124180573508165716157921, −9.145978517862082072816079858900, −8.570611933157460167149885055115, −7.946093092912831285360621515242, −7.34391638071145319827988985542, −6.73529519082847451308985885003, −6.38183167189614169029600475754, −5.35998631133052630855741203130, −4.60746508936177210269135914867, −3.34534227552155671660153330050, −2.62780247878860436110860336078, −1.19064202541676050214281881703, 1.19064202541676050214281881703, 2.62780247878860436110860336078, 3.34534227552155671660153330050, 4.60746508936177210269135914867, 5.35998631133052630855741203130, 6.38183167189614169029600475754, 6.73529519082847451308985885003, 7.34391638071145319827988985542, 7.946093092912831285360621515242, 8.570611933157460167149885055115, 9.145978517862082072816079858900, 9.496854124180573508165716157921, 10.03580089431797300060009499074, 10.75142325686499068465966747941, 11.06242556734797633316617654325

Graph of the $Z$-function along the critical line