Properties

Label 4-11858-1.1-c1e2-0-1
Degree $4$
Conductor $11858$
Sign $-1$
Analytic cond. $0.756076$
Root an. cond. $0.932484$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s − 2·7-s + 2·8-s − 2·9-s − 2·11-s + 4·14-s − 3·16-s + 4·18-s + 4·22-s − 8·23-s + 2·25-s − 2·28-s − 6·29-s − 2·32-s − 2·36-s − 10·37-s − 2·44-s + 16·46-s − 3·49-s − 4·50-s − 6·53-s − 4·56-s + 12·58-s + 4·63-s + 9·64-s + 6·67-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s − 0.755·7-s + 0.707·8-s − 2/3·9-s − 0.603·11-s + 1.06·14-s − 3/4·16-s + 0.942·18-s + 0.852·22-s − 1.66·23-s + 2/5·25-s − 0.377·28-s − 1.11·29-s − 0.353·32-s − 1/3·36-s − 1.64·37-s − 0.301·44-s + 2.35·46-s − 3/7·49-s − 0.565·50-s − 0.824·53-s − 0.534·56-s + 1.57·58-s + 0.503·63-s + 9/8·64-s + 0.733·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11858 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11858 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11858\)    =    \(2 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(0.756076\)
Root analytic conductor: \(0.932484\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 11858,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + T + p T^{2} ) \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 36 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 68 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90540016677067739160058361458, −10.31992092186155275882524681776, −9.887274252426983216110948943680, −9.425962044952057250943894169053, −8.894696315209156475641507456161, −8.246096250127892399826289085723, −7.965590664277385752439484694374, −7.20821098072717542995738691737, −6.55922433122554832282790128488, −5.73489242527448112325495211812, −5.15813552350976083696828757737, −4.03416931780400837276619230590, −3.19693469563960983162401477685, −1.96155072902169868442403003992, 0, 1.96155072902169868442403003992, 3.19693469563960983162401477685, 4.03416931780400837276619230590, 5.15813552350976083696828757737, 5.73489242527448112325495211812, 6.55922433122554832282790128488, 7.20821098072717542995738691737, 7.965590664277385752439484694374, 8.246096250127892399826289085723, 8.894696315209156475641507456161, 9.425962044952057250943894169053, 9.887274252426983216110948943680, 10.31992092186155275882524681776, 10.90540016677067739160058361458

Graph of the $Z$-function along the critical line