Properties

Label 4-252e2-1.1-c1e2-0-4
Degree $4$
Conductor $63504$
Sign $1$
Analytic cond. $4.04907$
Root an. cond. $1.41853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 4·5-s − 3·8-s + 4·10-s − 4·13-s − 16-s + 12·17-s − 4·20-s + 2·25-s − 4·26-s + 4·29-s + 5·32-s + 12·34-s + 12·37-s − 12·40-s − 4·41-s + 49-s + 2·50-s + 4·52-s − 12·53-s + 4·58-s − 4·61-s + 7·64-s − 16·65-s − 12·68-s − 12·73-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 1.78·5-s − 1.06·8-s + 1.26·10-s − 1.10·13-s − 1/4·16-s + 2.91·17-s − 0.894·20-s + 2/5·25-s − 0.784·26-s + 0.742·29-s + 0.883·32-s + 2.05·34-s + 1.97·37-s − 1.89·40-s − 0.624·41-s + 1/7·49-s + 0.282·50-s + 0.554·52-s − 1.64·53-s + 0.525·58-s − 0.512·61-s + 7/8·64-s − 1.98·65-s − 1.45·68-s − 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.04907\)
Root analytic conductor: \(1.41853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 63504,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.298871812\)
\(L(\frac12)\) \(\approx\) \(2.298871812\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.857567892373655758925106479846, −9.457705101580370517739336150901, −9.306486168015385400395632025578, −8.351153010775658504468507691128, −7.81295430367747747098376616892, −7.45452630662509700459332399892, −6.43539728173776997986575871832, −5.94607665445287604157300008429, −5.76945209288606009941542010236, −5.02709416296405066539370067618, −4.75834670654208540745088589071, −3.71279869000131289976682575519, −3.05422074105458389777226041971, −2.38203049551357769485459868076, −1.27003349896142462152543818564, 1.27003349896142462152543818564, 2.38203049551357769485459868076, 3.05422074105458389777226041971, 3.71279869000131289976682575519, 4.75834670654208540745088589071, 5.02709416296405066539370067618, 5.76945209288606009941542010236, 5.94607665445287604157300008429, 6.43539728173776997986575871832, 7.45452630662509700459332399892, 7.81295430367747747098376616892, 8.351153010775658504468507691128, 9.306486168015385400395632025578, 9.457705101580370517739336150901, 9.857567892373655758925106479846

Graph of the $Z$-function along the critical line