Properties

Label 4-5792-1.1-c1e2-0-0
Degree $4$
Conductor $5792$
Sign $1$
Analytic cond. $0.369302$
Root an. cond. $0.779553$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 8-s − 2·9-s − 3·10-s + 13-s + 16-s − 3·17-s + 2·18-s + 3·20-s − 25-s − 26-s − 3·29-s − 32-s + 3·34-s − 2·36-s − 5·37-s − 3·40-s + 15·41-s − 6·45-s − 4·49-s + 50-s + 52-s + 6·53-s + 3·58-s − 11·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.353·8-s − 2/3·9-s − 0.948·10-s + 0.277·13-s + 1/4·16-s − 0.727·17-s + 0.471·18-s + 0.670·20-s − 1/5·25-s − 0.196·26-s − 0.557·29-s − 0.176·32-s + 0.514·34-s − 1/3·36-s − 0.821·37-s − 0.474·40-s + 2.34·41-s − 0.894·45-s − 4/7·49-s + 0.141·50-s + 0.138·52-s + 0.824·53-s + 0.393·58-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5792 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5792 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5792\)    =    \(2^{5} \cdot 181\)
Sign: $1$
Analytic conductor: \(0.369302\)
Root analytic conductor: \(0.779553\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5792,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7426017584\)
\(L(\frac12)\) \(\approx\) \(0.7426017584\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
181$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 20 T + p T^{2} ) \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
59$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 85 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00955446952566062516831963552, −11.25307076375712601034740297514, −10.95734444896584609375042595477, −10.24949577024123301812024667933, −9.689448936766190710462567174021, −9.173847103355220735547726566332, −8.747537823519097228078111103344, −7.965905602869126536586482827876, −7.27356970543258952991675186551, −6.40875296722595694451334519466, −5.91603355397174398209604505550, −5.34556505829101948517607491106, −4.12506025686418199543457614455, −2.81964959448269450069319776233, −1.87628743613496808761921596450, 1.87628743613496808761921596450, 2.81964959448269450069319776233, 4.12506025686418199543457614455, 5.34556505829101948517607491106, 5.91603355397174398209604505550, 6.40875296722595694451334519466, 7.27356970543258952991675186551, 7.965905602869126536586482827876, 8.747537823519097228078111103344, 9.173847103355220735547726566332, 9.689448936766190710462567174021, 10.24949577024123301812024667933, 10.95734444896584609375042595477, 11.25307076375712601034740297514, 12.00955446952566062516831963552

Graph of the $Z$-function along the critical line