Properties

Label 4-242208-1.1-c1e2-0-0
Degree $4$
Conductor $242208$
Sign $1$
Analytic cond. $15.4433$
Root an. cond. $1.98237$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 6·5-s − 8-s + 9-s + 6·10-s − 8·13-s + 16-s + 6·17-s − 18-s − 6·20-s + 17·25-s + 8·26-s − 2·29-s − 32-s − 6·34-s + 36-s − 2·37-s + 6·40-s − 18·41-s − 6·45-s + 11·49-s − 17·50-s − 8·52-s − 12·53-s + 2·58-s − 20·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 2.68·5-s − 0.353·8-s + 1/3·9-s + 1.89·10-s − 2.21·13-s + 1/4·16-s + 1.45·17-s − 0.235·18-s − 1.34·20-s + 17/5·25-s + 1.56·26-s − 0.371·29-s − 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.328·37-s + 0.948·40-s − 2.81·41-s − 0.894·45-s + 11/7·49-s − 2.40·50-s − 1.10·52-s − 1.64·53-s + 0.262·58-s − 2.56·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242208 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242208 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(242208\)    =    \(2^{5} \cdot 3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(15.4433\)
Root analytic conductor: \(1.98237\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 242208,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2230704226\)
\(L(\frac12)\) \(\approx\) \(0.2230704226\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
29$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742732893743880397661101853194, −8.443424828695416122862075486969, −7.83268146353528315500962133734, −7.53788920881883152221186875139, −7.43139202428287466808911876527, −6.97231192698558333316844758012, −6.29337110214496682069455772774, −5.40752116211565700486495950334, −4.85512283254279582558561488230, −4.50728162696553084669927927089, −3.70435541571971822099748167322, −3.37304116241702720928761290471, −2.74469725024707480151490295474, −1.63272357936029339660940403376, −0.32069404542737933413219678177, 0.32069404542737933413219678177, 1.63272357936029339660940403376, 2.74469725024707480151490295474, 3.37304116241702720928761290471, 3.70435541571971822099748167322, 4.50728162696553084669927927089, 4.85512283254279582558561488230, 5.40752116211565700486495950334, 6.29337110214496682069455772774, 6.97231192698558333316844758012, 7.43139202428287466808911876527, 7.53788920881883152221186875139, 7.83268146353528315500962133734, 8.443424828695416122862075486969, 8.742732893743880397661101853194

Graph of the $Z$-function along the critical line