Properties

Label 4-90828-1.1-c1e2-0-3
Degree $4$
Conductor $90828$
Sign $1$
Analytic cond. $5.79127$
Root an. cond. $1.55129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 10·7-s + 9-s + 12-s − 8·13-s + 16-s − 2·19-s + 10·21-s − 25-s + 27-s + 10·28-s − 8·31-s + 36-s − 2·37-s − 8·39-s − 14·43-s + 48-s + 61·49-s − 8·52-s − 2·57-s − 20·61-s + 10·63-s + 64-s − 8·67-s + 4·73-s − 75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 3.77·7-s + 1/3·9-s + 0.288·12-s − 2.21·13-s + 1/4·16-s − 0.458·19-s + 2.18·21-s − 1/5·25-s + 0.192·27-s + 1.88·28-s − 1.43·31-s + 1/6·36-s − 0.328·37-s − 1.28·39-s − 2.13·43-s + 0.144·48-s + 61/7·49-s − 1.10·52-s − 0.264·57-s − 2.56·61-s + 1.25·63-s + 1/8·64-s − 0.977·67-s + 0.468·73-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90828 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90828 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(90828\)    =    \(2^{2} \cdot 3^{3} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(5.79127\)
Root analytic conductor: \(1.55129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 90828,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.833374908\)
\(L(\frac12)\) \(\approx\) \(2.833374908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
29$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.487370424405800916973935371322, −9.109497480949641538548778552338, −8.443424828695416122862075486969, −7.987480521096063799248885737020, −7.83268146353528315500962133734, −7.30170311636574927756275463221, −6.97231192698558333316844758012, −5.87958673389096713663595768150, −5.13801159009478652046400048130, −4.85512283254279582558561488230, −4.61358895125554701935773223253, −3.70435541571971822099748167322, −2.54786728707166221497736882776, −1.92188031498074361434341547863, −1.63272357936029339660940403376, 1.63272357936029339660940403376, 1.92188031498074361434341547863, 2.54786728707166221497736882776, 3.70435541571971822099748167322, 4.61358895125554701935773223253, 4.85512283254279582558561488230, 5.13801159009478652046400048130, 5.87958673389096713663595768150, 6.97231192698558333316844758012, 7.30170311636574927756275463221, 7.83268146353528315500962133734, 7.987480521096063799248885737020, 8.443424828695416122862075486969, 9.109497480949641538548778552338, 9.487370424405800916973935371322

Graph of the $Z$-function along the critical line