Properties

Label 4-90828-1.1-c1e2-0-0
Degree $4$
Conductor $90828$
Sign $1$
Analytic cond. $5.79127$
Root an. cond. $1.55129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 2·7-s + 9-s + 12-s + 16-s − 2·19-s + 2·21-s − 9·25-s + 27-s + 2·28-s + 8·31-s + 36-s + 6·37-s + 18·43-s + 48-s − 11·49-s − 2·57-s + 12·61-s + 2·63-s + 64-s + 24·67-s − 20·73-s − 9·75-s − 2·76-s + 20·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 0.755·7-s + 1/3·9-s + 0.288·12-s + 1/4·16-s − 0.458·19-s + 0.436·21-s − 9/5·25-s + 0.192·27-s + 0.377·28-s + 1.43·31-s + 1/6·36-s + 0.986·37-s + 2.74·43-s + 0.144·48-s − 1.57·49-s − 0.264·57-s + 1.53·61-s + 0.251·63-s + 1/8·64-s + 2.93·67-s − 2.34·73-s − 1.03·75-s − 0.229·76-s + 2.25·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90828 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90828 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(90828\)    =    \(2^{2} \cdot 3^{3} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(5.79127\)
Root analytic conductor: \(1.55129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 90828,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.287833704\)
\(L(\frac12)\) \(\approx\) \(2.287833704\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
29$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.808192641909838259670499406456, −9.212591262870804148890833263566, −8.394490307116038147042717026528, −8.240694861078888273486995722554, −7.63591160976614872787897721858, −7.39230013101638678138560124593, −6.35948215250638977727528832831, −6.34044350417483302017587248899, −5.44738455570614240033325393245, −4.88979839840342254384190809437, −4.07632477811469157902271861358, −3.79639747241266837059275722803, −2.60778907267363927767629977323, −2.30356803383598646559796068707, −1.23586403051660851431378504272, 1.23586403051660851431378504272, 2.30356803383598646559796068707, 2.60778907267363927767629977323, 3.79639747241266837059275722803, 4.07632477811469157902271861358, 4.88979839840342254384190809437, 5.44738455570614240033325393245, 6.34044350417483302017587248899, 6.35948215250638977727528832831, 7.39230013101638678138560124593, 7.63591160976614872787897721858, 8.240694861078888273486995722554, 8.394490307116038147042717026528, 9.212591262870804148890833263566, 9.808192641909838259670499406456

Graph of the $Z$-function along the critical line