Properties

Label 4-869e2-1.1-c1e2-0-0
Degree $4$
Conductor $755161$
Sign $1$
Analytic cond. $48.1497$
Root an. cond. $2.63419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·4-s − 6·5-s − 3·9-s − 2·11-s + 6·12-s + 12·15-s + 5·16-s + 18·20-s + 4·23-s + 17·25-s + 14·27-s − 20·31-s + 4·33-s + 9·36-s − 4·37-s + 6·44-s + 18·45-s + 14·47-s − 10·48-s − 13·49-s + 16·53-s + 12·55-s − 6·59-s − 36·60-s − 3·64-s + 16·67-s + ⋯
L(s)  = 1  − 1.15·3-s − 3/2·4-s − 2.68·5-s − 9-s − 0.603·11-s + 1.73·12-s + 3.09·15-s + 5/4·16-s + 4.02·20-s + 0.834·23-s + 17/5·25-s + 2.69·27-s − 3.59·31-s + 0.696·33-s + 3/2·36-s − 0.657·37-s + 0.904·44-s + 2.68·45-s + 2.04·47-s − 1.44·48-s − 1.85·49-s + 2.19·53-s + 1.61·55-s − 0.781·59-s − 4.64·60-s − 3/8·64-s + 1.95·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755161 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755161 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(755161\)    =    \(11^{2} \cdot 79^{2}\)
Sign: $1$
Analytic conductor: \(48.1497\)
Root analytic conductor: \(2.63419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 755161,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_2$ \( 1 + 2 T + p T^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 19 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.100676573139465817505970839874, −7.32105974546898640977495411592, −7.12147698344619796195085066396, −6.61299535373507474596718204766, −5.62855197375189256680055275378, −5.30227837415656706097307136496, −5.29917071437467895295333587611, −4.57590462337170777040438551304, −3.93822077089834607238244805934, −3.76592143771251579951082054976, −3.30515882404899528069116499186, −2.47732001383873516724842424289, −0.857939810458084365118492515226, 0, 0, 0.857939810458084365118492515226, 2.47732001383873516724842424289, 3.30515882404899528069116499186, 3.76592143771251579951082054976, 3.93822077089834607238244805934, 4.57590462337170777040438551304, 5.29917071437467895295333587611, 5.30227837415656706097307136496, 5.62855197375189256680055275378, 6.61299535373507474596718204766, 7.12147698344619796195085066396, 7.32105974546898640977495411592, 8.100676573139465817505970839874

Graph of the $Z$-function along the critical line