Properties

Label 4-21296-1.1-c1e2-0-3
Degree $4$
Conductor $21296$
Sign $-1$
Analytic cond. $1.35785$
Root an. cond. $1.07947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 6·5-s − 3·9-s − 11-s − 12·15-s − 6·23-s + 17·25-s − 14·27-s + 10·31-s − 2·33-s − 2·37-s + 18·45-s − 10·49-s − 12·53-s + 6·55-s + 6·59-s − 2·67-s − 12·69-s + 30·71-s + 34·75-s − 4·81-s − 18·89-s + 20·93-s − 14·97-s + 3·99-s + 16·103-s − 4·111-s + ⋯
L(s)  = 1  + 1.15·3-s − 2.68·5-s − 9-s − 0.301·11-s − 3.09·15-s − 1.25·23-s + 17/5·25-s − 2.69·27-s + 1.79·31-s − 0.348·33-s − 0.328·37-s + 2.68·45-s − 1.42·49-s − 1.64·53-s + 0.809·55-s + 0.781·59-s − 0.244·67-s − 1.44·69-s + 3.56·71-s + 3.92·75-s − 4/9·81-s − 1.90·89-s + 2.07·93-s − 1.42·97-s + 0.301·99-s + 1.57·103-s − 0.379·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21296\)    =    \(2^{4} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(1.35785\)
Root analytic conductor: \(1.07947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 21296,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82109708424629217833914870894, −9.813753565180213813561671136388, −9.431312841027853518235538734747, −8.453584718504860075735545131686, −8.204138017445950847285230309260, −8.132665807481574488057539990847, −7.60852684015633966980596452192, −6.82620843631036387433675479847, −6.07532856213092694592866222076, −5.11227132195889762323685903220, −4.33075028432463196258949288256, −3.68366753852883183133176875421, −3.27381985666804460223319703873, −2.47303941619863806873155456193, 0, 2.47303941619863806873155456193, 3.27381985666804460223319703873, 3.68366753852883183133176875421, 4.33075028432463196258949288256, 5.11227132195889762323685903220, 6.07532856213092694592866222076, 6.82620843631036387433675479847, 7.60852684015633966980596452192, 8.132665807481574488057539990847, 8.204138017445950847285230309260, 8.453584718504860075735545131686, 9.431312841027853518235538734747, 9.813753565180213813561671136388, 10.82109708424629217833914870894

Graph of the $Z$-function along the critical line