Properties

Label 4-893-1.1-c1e2-0-0
Degree $4$
Conductor $893$
Sign $-1$
Analytic cond. $0.0569384$
Root an. cond. $0.488485$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 2·3-s + 4·4-s − 4·5-s + 6·6-s − 7-s − 3·8-s + 9-s + 12·10-s − 8·12-s − 13-s + 3·14-s + 8·15-s + 3·16-s − 3·18-s − 4·19-s − 16·20-s + 2·21-s + 2·23-s + 6·24-s + 5·25-s + 3·26-s − 2·27-s − 4·28-s − 24·30-s + 4·31-s − 6·32-s + ⋯
L(s)  = 1  − 2.12·2-s − 1.15·3-s + 2·4-s − 1.78·5-s + 2.44·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s + 3.79·10-s − 2.30·12-s − 0.277·13-s + 0.801·14-s + 2.06·15-s + 3/4·16-s − 0.707·18-s − 0.917·19-s − 3.57·20-s + 0.436·21-s + 0.417·23-s + 1.22·24-s + 25-s + 0.588·26-s − 0.384·27-s − 0.755·28-s − 4.38·30-s + 0.718·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 893 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 893 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(893\)    =    \(19 \cdot 47\)
Sign: $-1$
Analytic conductor: \(0.0569384\)
Root analytic conductor: \(0.488485\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 893,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad19$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 5 T + p T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 3 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
3$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T - p T^{2} + p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$D_{4}$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 47 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 12 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 14 T + 108 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - T + 33 T^{2} - p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 6 T + 10 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 10 T + 106 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 6 T + 70 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T - 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 14 T + 177 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 156 T^{2} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 3 T - 49 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 2 T - 121 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.4901123623, −19.1188559049, −18.9941196049, −18.1962238572, −17.5803652188, −17.1605094556, −16.8851484436, −16.0601464230, −15.7560683073, −15.1661355976, −14.3513730910, −13.1074126825, −12.3110918435, −11.8701368771, −11.2395985780, −10.7353474786, −10.0294591025, −9.31948512140, −8.38401905615, −8.11597358074, −7.20784764151, −6.47935710087, −5.14407534839, −3.75241654741, 0, 3.75241654741, 5.14407534839, 6.47935710087, 7.20784764151, 8.11597358074, 8.38401905615, 9.31948512140, 10.0294591025, 10.7353474786, 11.2395985780, 11.8701368771, 12.3110918435, 13.1074126825, 14.3513730910, 15.1661355976, 15.7560683073, 16.0601464230, 16.8851484436, 17.1605094556, 17.5803652188, 18.1962238572, 18.9941196049, 19.1188559049, 19.4901123623

Graph of the $Z$-function along the critical line