Properties

Label 4-743-1.1-c1e2-0-0
Degree $4$
Conductor $743$
Sign $-1$
Analytic cond. $0.0473743$
Root an. cond. $0.466536$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3·3-s + 4·4-s − 2·5-s + 9·6-s − 3·7-s − 3·8-s + 4·9-s + 6·10-s − 11-s − 12·12-s + 2·13-s + 9·14-s + 6·15-s + 3·16-s − 12·18-s − 19-s − 8·20-s + 9·21-s + 3·22-s − 7·23-s + 9·24-s − 25-s − 6·26-s − 6·27-s − 12·28-s − 4·29-s + ⋯
L(s)  = 1  − 2.12·2-s − 1.73·3-s + 2·4-s − 0.894·5-s + 3.67·6-s − 1.13·7-s − 1.06·8-s + 4/3·9-s + 1.89·10-s − 0.301·11-s − 3.46·12-s + 0.554·13-s + 2.40·14-s + 1.54·15-s + 3/4·16-s − 2.82·18-s − 0.229·19-s − 1.78·20-s + 1.96·21-s + 0.639·22-s − 1.45·23-s + 1.83·24-s − 1/5·25-s − 1.17·26-s − 1.15·27-s − 2.26·28-s − 0.742·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 743 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 743 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(743\)
Sign: $-1$
Analytic conductor: \(0.0473743\)
Root analytic conductor: \(0.466536\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 743,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad743$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 24 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
3$C_4$ \( 1 + p T + 5 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + 2 T + p T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$D_{4}$ \( 1 + T + 5 T^{2} + p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 2 T + 19 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + T + 7 T^{2} + p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 7 T + 33 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 50 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 5 T - 3 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T - 12 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 8 T + 76 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 12 T + 90 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + T - 17 T^{2} + p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 11 T + 118 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - T - 114 T^{2} - p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 3 T + 134 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$D_{4}$ \( 1 - 7 T + 34 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 6 T + 158 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.7143475427, −19.5061126877, −18.8634136420, −18.4776787737, −17.7911312680, −17.6388791279, −16.9042494829, −16.3106700246, −16.1618337957, −15.5878967295, −14.6606903532, −13.4211430263, −12.6296942421, −12.0934609083, −11.3598900890, −10.8563032782, −10.2643355038, −9.52638330943, −8.99255140550, −7.88510489674, −7.47176030299, −6.23098270330, −5.75271702955, −3.96042632309, 0, 3.96042632309, 5.75271702955, 6.23098270330, 7.47176030299, 7.88510489674, 8.99255140550, 9.52638330943, 10.2643355038, 10.8563032782, 11.3598900890, 12.0934609083, 12.6296942421, 13.4211430263, 14.6606903532, 15.5878967295, 16.1618337957, 16.3106700246, 16.9042494829, 17.6388791279, 17.7911312680, 18.4776787737, 18.8634136420, 19.5061126877, 19.7143475427

Graph of the $Z$-function along the critical line