Properties

Label 4-1062-1.1-c1e2-0-0
Degree $4$
Conductor $1062$
Sign $-1$
Analytic cond. $0.0677140$
Root an. cond. $0.510116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4-s − 3·5-s + 6·6-s − 3·7-s + 2·8-s + 6·9-s + 6·10-s − 3·12-s − 2·13-s + 6·14-s + 9·15-s − 3·16-s − 2·17-s − 12·18-s − 3·19-s − 3·20-s + 9·21-s − 2·23-s − 6·24-s + 3·25-s + 4·26-s − 9·27-s − 3·28-s + 3·29-s − 18·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 1/2·4-s − 1.34·5-s + 2.44·6-s − 1.13·7-s + 0.707·8-s + 2·9-s + 1.89·10-s − 0.866·12-s − 0.554·13-s + 1.60·14-s + 2.32·15-s − 3/4·16-s − 0.485·17-s − 2.82·18-s − 0.688·19-s − 0.670·20-s + 1.96·21-s − 0.417·23-s − 1.22·24-s + 3/5·25-s + 0.784·26-s − 1.73·27-s − 0.566·28-s + 0.557·29-s − 3.28·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1062 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1062 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1062\)    =    \(2 \cdot 3^{2} \cdot 59\)
Sign: $-1$
Analytic conductor: \(0.0677140\)
Root analytic conductor: \(0.510116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1062,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + T + p T^{2} ) \)
3$C_2$ \( 1 + p T + p T^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 8 T + p T^{2} ) \)
good5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$D_{4}$ \( 1 + 3 T + 6 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_4$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 3 T + 6 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 3 T + 14 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$D_{4}$ \( 1 - 8 T + 46 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$D_{4}$ \( 1 + 10 T + 70 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 7 T + 102 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 90 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + p T^{2} ) \)
83$D_{4}$ \( 1 + 8 T + 50 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 2 T + 30 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 6 T + 106 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.8772963860, −19.4043153922, −18.9526513704, −18.3802949176, −18.0738157481, −17.2970676600, −16.9062141799, −16.4405772503, −16.0364442060, −15.4755751303, −14.8240037819, −13.6175897810, −12.7762377015, −12.4225804689, −11.7565585421, −11.0462718272, −10.6211580847, −9.86441395466, −9.35258677494, −8.35151542537, −7.59724861641, −6.89663701974, −6.14411969783, −4.89186133195, −3.93517256570, 0, 3.93517256570, 4.89186133195, 6.14411969783, 6.89663701974, 7.59724861641, 8.35151542537, 9.35258677494, 9.86441395466, 10.6211580847, 11.0462718272, 11.7565585421, 12.4225804689, 12.7762377015, 13.6175897810, 14.8240037819, 15.4755751303, 16.0364442060, 16.4405772503, 16.9062141799, 17.2970676600, 18.0738157481, 18.3802949176, 18.9526513704, 19.4043153922, 19.8772963860

Graph of the $Z$-function along the critical line