Properties

Degree 2
Conductor $ 2^{5} \cdot 3 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 4·7-s + 9-s + 4·11-s − 2·13-s + 2·15-s − 6·17-s − 4·19-s − 4·21-s − 25-s + 27-s + 2·29-s + 4·31-s + 4·33-s − 8·35-s − 2·37-s − 2·39-s + 2·41-s + 4·43-s + 2·45-s + 8·47-s + 9·49-s − 6·51-s + 10·53-s + 8·55-s − 4·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.516·15-s − 1.45·17-s − 0.917·19-s − 0.872·21-s − 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.696·33-s − 1.35·35-s − 0.328·37-s − 0.320·39-s + 0.312·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s − 0.840·51-s + 1.37·53-s + 1.07·55-s − 0.529·57-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(96\)    =    \(2^{5} \cdot 3\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{96} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 96,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.171420084$
$L(\frac12)$  $\approx$  $1.171420084$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.51135194588092, −19.23209228818671, −17.73689723786818, −17.00272486564991, −15.92105167953575, −14.92007613076932, −13.80073173066515, −13.14140490363894, −12.10541458487679, −10.44913304188171, −9.488699237661810, −8.839886292016705, −6.914691036269094, −6.152670130156033, −4.106257980143635, −2.448217299924003, 2.448217299924003, 4.106257980143635, 6.152670130156033, 6.914691036269094, 8.839886292016705, 9.488699237661810, 10.44913304188171, 12.10541458487679, 13.14140490363894, 13.80073173066515, 14.92007613076932, 15.92105167953575, 17.00272486564991, 17.73689723786818, 19.23209228818671, 19.51135194588092

Graph of the $Z$-function along the critical line