Properties

Degree 2
Conductor 79
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 3·5-s + 6-s − 7-s + 3·8-s − 2·9-s + 3·10-s − 2·11-s + 12-s + 3·13-s + 14-s + 3·15-s − 16-s − 6·17-s + 2·18-s + 4·19-s + 3·20-s + 21-s + 2·22-s + 2·23-s − 3·24-s + 4·25-s − 3·26-s + 5·27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 1.34·5-s + 0.408·6-s − 0.377·7-s + 1.06·8-s − 2/3·9-s + 0.948·10-s − 0.603·11-s + 0.288·12-s + 0.832·13-s + 0.267·14-s + 0.774·15-s − 1/4·16-s − 1.45·17-s + 0.471·18-s + 0.917·19-s + 0.670·20-s + 0.218·21-s + 0.426·22-s + 0.417·23-s − 0.612·24-s + 4/5·25-s − 0.588·26-s + 0.962·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 79 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 79 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(79\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{79} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 79,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \neq 79$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p = 79$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad79 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
3 \( 1 + T + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 7 T + p T^{2} \)
97 \( 1 + 19 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.80173549339433, −18.66668784881144, −18.10787649496745, −16.96121614821607, −16.13989279835312, −15.28154981464175, −13.76412543794759, −12.72651837214303, −11.35676198529650, −10.80850123926613, −9.181129339396648, −8.282431792555003, −7.121476983446198, −5.299170714374679, −3.765921437712516, 0, 3.765921437712516, 5.299170714374679, 7.121476983446198, 8.282431792555003, 9.181129339396648, 10.80850123926613, 11.35676198529650, 12.72651837214303, 13.76412543794759, 15.28154981464175, 16.13989279835312, 16.96121614821607, 18.10787649496745, 18.66668784881144, 19.80173549339433

Graph of the $Z$-function along the critical line