Properties

Degree 2
Conductor $ 2^{3} \cdot 3^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·11-s − 2·13-s − 2·17-s − 4·19-s + 8·23-s − 25-s − 6·29-s + 8·31-s + 6·37-s + 6·41-s + 4·43-s − 7·49-s + 2·53-s − 8·55-s − 4·59-s − 2·61-s − 4·65-s − 4·67-s − 8·71-s + 10·73-s − 8·79-s + 4·83-s − 4·85-s + 6·89-s − 8·95-s + 2·97-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.20·11-s − 0.554·13-s − 0.485·17-s − 0.917·19-s + 1.66·23-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.986·37-s + 0.937·41-s + 0.609·43-s − 49-s + 0.274·53-s − 1.07·55-s − 0.520·59-s − 0.256·61-s − 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s − 0.900·79-s + 0.439·83-s − 0.433·85-s + 0.635·89-s − 0.820·95-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(72\)    =    \(2^{3} \cdot 3^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{72} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 72,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $0.9732684211$
$L(\frac12)$  $\approx$  $0.9732684211$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.57344849787178, −18.62873313844236, −17.61469674863568, −16.90116392518663, −15.60011067623620, −14.66535545665709, −13.38110032732464, −12.79661702509897, −11.17432181718976, −10.16546244400809, −9.065170023749916, −7.624032071197919, −6.149692184843363, −4.833268552475703, −2.516594942046149, 2.516594942046149, 4.833268552475703, 6.149692184843363, 7.624032071197919, 9.065170023749916, 10.16546244400809, 11.17432181718976, 12.79661702509897, 13.38110032732464, 14.66535545665709, 15.60011067623620, 16.90116392518663, 17.61469674863568, 18.62873313844236, 19.57344849787178

Graph of the $Z$-function along the critical line