Properties

Degree 2
Conductor 234446
Sign $1$
Self-dual yes
Motivic weight 1

Origins

Related objects

Downloads

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s − 4·5-s + 3·6-s − 5·7-s − 8-s + 6·9-s + 4·10-s − 6·11-s − 3·12-s − 6·13-s + 5·14-s + 12·15-s + 16-s − 6·17-s − 6·18-s − 8·19-s − 4·20-s + 15·21-s + 6·22-s − 6·23-s + 3·24-s + 11·25-s + 6·26-s − 9·27-s − 5·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.732·3-s + 0.5·4-s − 1.788·5-s + 1.224·6-s − 1.889·7-s − 0.353·8-s + 2·9-s + 1.264·10-s − 1.809·11-s − 0.866·12-s − 1.664·13-s + 1.336·14-s + 3.098·15-s + 0.25·16-s − 1.455·17-s − 1.414·18-s − 1.835·19-s − 0.894·20-s + 3.273·21-s + 1.279·22-s − 1.251·23-s + 0.612·24-s + 2.2·25-s + 1.176·26-s − 1.732·27-s − 0.944·28-s + ⋯

Functional equation

\[\begin{align} \Lambda(s)=\mathstrut & 234446 ^{s/2} \Gamma_{\C}(s) \cdot L(s)\cr =\mathstrut & \Lambda(2-s) \end{align} \]
\[\begin{align} \Lambda(s)=\mathstrut & 234446 ^{s/2} \Gamma_{\C}(s+0.5) \cdot L(s)\cr =\mathstrut & \Lambda(1-s) \end{align} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(234446\)    =    \(2 \cdot 117223\)
\( \varepsilon \)  =  $1$
weight  =  1
character  :  $\chi_{234446} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  4
Selberg data  =  $(2,\ 234446,\ (\ :1/2),\ 1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;117223\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;117223\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2$1+T$
117223$1-T$
good3$1+3T+3T^{2}$
5$1+4T+5T^{2}$
7$1+5T+7T^{2}$
11$1+6T+11T^{2}$
13$1+6T+13T^{2}$
17$1+6T+17T^{2}$
19$1+8T+19T^{2}$
23$1+6T+23T^{2}$
29$1+6T+29T^{2}$
31$1+4T+31T^{2}$
37$1+11T+37T^{2}$
41$1+9T+41T^{2}$
43$1+4T+43T^{2}$
47$1+8T+47T^{2}$
53$1+10T+53T^{2}$
59$1+59T^{2}$
61$1+7T+61T^{2}$
67$1+7T+67T^{2}$
71$1+13T+71T^{2}$
73$1+8T+73T^{2}$
79$1-10T+79T^{2}$
83$1+3T+83T^{2}$
89$1+6T+89T^{2}$
97$1-7T+97T^{2}$
show more
show less
\[\begin{equation} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{equation}\]

Imaginary part of the first few zeros on the critical line

−13.33368034086200, −13.09360406818600, −12.73824472819508, −12.24614205522120, −12.04497230225563, −11.55674326486266, −10.89126786866145, −10.58503012146236, −10.35721937854419, −9.879771989628829, −9.261689397031543, −8.645433260663214, −8.136132709760610, −7.500600983907722, −7.222532857430923, −6.730090190731062, −6.443618701646912, −5.825068468989255, −5.165585013784794, −4.717665714334101, −4.254722279811606, −3.589684506825036, −3.045158921575872, −2.335210734225171, −1.733532247157827, 0, 0, 0, 0, 1.733532247157827, 2.335210734225171, 3.045158921575872, 3.589684506825036, 4.254722279811606, 4.717665714334101, 5.165585013784794, 5.825068468989255, 6.443618701646912, 6.730090190731062, 7.222532857430923, 7.500600983907722, 8.136132709760610, 8.645433260663214, 9.261689397031543, 9.879771989628829, 10.35721937854419, 10.58503012146236, 10.89126786866145, 11.55674326486266, 12.04497230225563, 12.24614205522120, 12.73824472819508, 13.09360406818600, 13.33368034086200

Graph of the $Z$-function along the critical line