# Properties

 Degree 2 Conductor $3 \cdot 5 \cdot 13$ Sign $1$ Motivic weight 1 Primitive yes Self-dual yes Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 − 2-s + 3-s − 4-s + 5-s − 6-s + 3·8-s + 9-s − 10-s + 4·11-s − 12-s + 13-s + 15-s − 16-s + 2·17-s − 18-s − 4·19-s − 20-s − 4·22-s + 8·23-s + 3·24-s + 25-s − 26-s + 27-s − 2·29-s − 30-s − 8·31-s − 5·32-s + ⋯
 L(s)  = 1 − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.852·22-s + 1.66·23-s + 0.612·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.371·29-s − 0.182·30-s − 1.43·31-s − 0.883·32-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned} \Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$195$$    =    $$3 \cdot 5 \cdot 13$$ $$\varepsilon$$ = $1$ motivic weight = $$1$$ character : $\chi_{195} (1, \cdot )$ Sato-Tate : $\mathrm{SU}(2)$ primitive : yes self-dual : yes analytic rank = 0 Selberg data = $(2,\ 195,\ (\ :1/2),\ 1)$ $L(1)$ $\approx$ $1.005712135$ $L(\frac12)$ $\approx$ $1.005712135$ $L(\frac{3}{2})$ not available $L(1)$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$ where, for $p \notin \{3,\;5,\;13\}$, $F_p(T) = 1 - a_p T + p T^2 .$If $p \in \{3,\;5,\;13\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 $$1 - T$$
5 $$1 - T$$
13 $$1 - T$$
good2 $$1 + T + p T^{2}$$
7 $$1 + p T^{2}$$
11 $$1 - 4 T + p T^{2}$$
17 $$1 - 2 T + p T^{2}$$
19 $$1 + 4 T + p T^{2}$$
23 $$1 - 8 T + p T^{2}$$
29 $$1 + 2 T + p T^{2}$$
31 $$1 + 8 T + p T^{2}$$
37 $$1 - 6 T + p T^{2}$$
41 $$1 + 6 T + p T^{2}$$
43 $$1 + 4 T + p T^{2}$$
47 $$1 + 8 T + p T^{2}$$
53 $$1 - 6 T + p T^{2}$$
59 $$1 + 12 T + p T^{2}$$
61 $$1 + 2 T + p T^{2}$$
67 $$1 + 4 T + p T^{2}$$
71 $$1 + p T^{2}$$
73 $$1 + 6 T + p T^{2}$$
79 $$1 - 16 T + p T^{2}$$
83 $$1 + 4 T + p T^{2}$$
89 $$1 - 10 T + p T^{2}$$
97 $$1 - 18 T + p T^{2}$$
\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}