Properties

Degree 2
Conductor $ 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5-s − 7-s + 2·10-s + 4·11-s − 2·13-s − 2·14-s − 4·16-s − 3·17-s − 8·19-s + 2·20-s + 8·22-s + 6·23-s − 4·25-s − 4·26-s − 2·28-s + 4·29-s + 6·31-s − 8·32-s − 6·34-s − 35-s − 3·37-s − 16·38-s − 41-s + 11·43-s + 8·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.447·5-s − 0.377·7-s + 0.632·10-s + 1.20·11-s − 0.554·13-s − 0.534·14-s − 16-s − 0.727·17-s − 1.83·19-s + 0.447·20-s + 1.70·22-s + 1.25·23-s − 4/5·25-s − 0.784·26-s − 0.377·28-s + 0.742·29-s + 1.07·31-s − 1.41·32-s − 1.02·34-s − 0.169·35-s − 0.493·37-s − 2.59·38-s − 0.156·41-s + 1.67·43-s + 1.20·44-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(189\)    =    \(3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{189} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 189,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.264918073$
$L(\frac12)$  $\approx$  $2.264918073$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.61413007975858, −19.19274974988676, −17.60871509257304, −17.13538166584385, −15.88568605418589, −14.99008441837334, −14.36958708718689, −13.46036427009588, −12.75190128426547, −11.93218284814086, −10.91981085800737, −9.606127837407755, −8.650153087392553, −6.755870376351774, −6.254712513049408, −4.865905260261485, −3.905179958053792, −2.422361551597170, 2.422361551597170, 3.905179958053792, 4.865905260261485, 6.254712513049408, 6.755870376351774, 8.650153087392553, 9.606127837407755, 10.91981085800737, 11.93218284814086, 12.75190128426547, 13.46036427009588, 14.36958708718689, 14.99008441837334, 15.88568605418589, 17.13538166584385, 17.60871509257304, 19.19274974988676, 19.61413007975858

Graph of the $Z$-function along the critical line