Properties

Label 2-136e2-1.1-c1-0-0
Degree $2$
Conductor $18496$
Sign $1$
Analytic cond. $147.691$
Root an. cond. $12.1528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·7-s + 9-s − 6·11-s − 2·13-s − 4·19-s − 8·21-s − 5·25-s − 4·27-s − 4·31-s − 12·33-s − 4·37-s − 4·39-s − 6·41-s + 8·43-s + 9·49-s + 6·53-s − 8·57-s − 4·61-s − 4·63-s + 8·67-s − 2·73-s − 10·75-s + 24·77-s + 8·79-s − 11·81-s − 6·89-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.51·7-s + 1/3·9-s − 1.80·11-s − 0.554·13-s − 0.917·19-s − 1.74·21-s − 25-s − 0.769·27-s − 0.718·31-s − 2.08·33-s − 0.657·37-s − 0.640·39-s − 0.937·41-s + 1.21·43-s + 9/7·49-s + 0.824·53-s − 1.05·57-s − 0.512·61-s − 0.503·63-s + 0.977·67-s − 0.234·73-s − 1.15·75-s + 2.73·77-s + 0.900·79-s − 1.22·81-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18496\)    =    \(2^{6} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(147.691\)
Root analytic conductor: \(12.1528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18496,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6394067696\)
\(L(\frac12)\) \(\approx\) \(0.6394067696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.74775914425607, −15.12318734667989, −14.89915926555749, −13.82659814222981, −13.72320711619877, −13.03993311679758, −12.66889927609769, −12.18999116435409, −11.21059271079593, −10.54185244713209, −10.08092068536098, −9.564119133765275, −9.050010623630776, −8.353268087415553, −7.903213785085241, −7.262613553954474, −6.719595290572091, −5.789360901577994, −5.427257221399841, −4.401732064826470, −3.652854559245467, −3.092731273492740, −2.479907931247419, −2.015532955645385, −0.2821296255406784, 0.2821296255406784, 2.015532955645385, 2.479907931247419, 3.092731273492740, 3.652854559245467, 4.401732064826470, 5.427257221399841, 5.789360901577994, 6.719595290572091, 7.262613553954474, 7.903213785085241, 8.353268087415553, 9.050010623630776, 9.564119133765275, 10.08092068536098, 10.54185244713209, 11.21059271079593, 12.18999116435409, 12.66889927609769, 13.03993311679758, 13.72320711619877, 13.82659814222981, 14.89915926555749, 15.12318734667989, 15.74775914425607

Graph of the $Z$-function along the critical line