Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 29 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s − 2·11-s + 12-s + 14-s − 15-s + 16-s − 3·17-s + 18-s − 19-s − 20-s + 21-s − 2·22-s − 4·23-s + 24-s − 4·25-s + 27-s + 28-s + 29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s + 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s − 0.229·19-s − 0.223·20-s + 0.218·21-s − 0.426·22-s − 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.192·27-s + 0.188·28-s + 0.185·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(174\)    =    \(2 \cdot 3 \cdot 29\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{174} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 174,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.859803958$
$L(\frac12)$  $\approx$  $1.859803958$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;29\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;29\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.97182703037753, −19.24264006763232, −18.22325596558153, −17.24832903017816, −15.91838749776304, −15.50830253317561, −14.50742713436941, −13.71492335794328, −12.86095607470804, −11.85641814548161, −10.92900501784752, −9.808192641909838, −8.394490307116038, −7.635911609766149, −6.340443504174833, −4.889798398403423, −3.796397472412668, −2.303568033835986, 2.303568033835986, 3.796397472412668, 4.889798398403423, 6.340443504174833, 7.635911609766149, 8.394490307116038, 9.808192641909838, 10.92900501784752, 11.85641814548161, 12.86095607470804, 13.71492335794328, 14.50742713436941, 15.50830253317561, 15.91838749776304, 17.24832903017816, 18.22325596558153, 19.24264006763232, 19.97182703037753

Graph of the $Z$-function along the critical line