Properties

Label 2-340e2-1.1-c1-0-49
Degree $2$
Conductor $115600$
Sign $1$
Analytic cond. $923.070$
Root an. cond. $30.3820$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·7-s + 9-s + 6·11-s − 2·13-s + 4·19-s + 8·21-s − 4·27-s − 4·31-s + 12·33-s − 4·37-s − 4·39-s − 6·41-s + 8·43-s + 9·49-s + 6·53-s + 8·57-s + 4·61-s + 4·63-s + 8·67-s + 2·73-s + 24·77-s + 8·79-s − 11·81-s − 6·89-s − 8·91-s − 8·93-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.51·7-s + 1/3·9-s + 1.80·11-s − 0.554·13-s + 0.917·19-s + 1.74·21-s − 0.769·27-s − 0.718·31-s + 2.08·33-s − 0.657·37-s − 0.640·39-s − 0.937·41-s + 1.21·43-s + 9/7·49-s + 0.824·53-s + 1.05·57-s + 0.512·61-s + 0.503·63-s + 0.977·67-s + 0.234·73-s + 2.73·77-s + 0.900·79-s − 1.22·81-s − 0.635·89-s − 0.838·91-s − 0.829·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115600\)    =    \(2^{4} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(923.070\)
Root analytic conductor: \(30.3820\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.470341578\)
\(L(\frac12)\) \(\approx\) \(6.470341578\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96582087213675, −13.28027949360342, −12.63750040451009, −11.97022486813255, −11.74102261104532, −11.29762498234281, −10.75977634309922, −10.04192420637618, −9.520426933616849, −9.093690524406129, −8.677039262265176, −8.305512966092808, −7.609551022605158, −7.362936254504092, −6.774324012176943, −6.062099599822776, −5.355188945904279, −4.958535434917611, −4.229472464003836, −3.764942303022496, −3.326112791398150, −2.462707098656007, −1.946222684807476, −1.448378547336679, −0.7422829552441614, 0.7422829552441614, 1.448378547336679, 1.946222684807476, 2.462707098656007, 3.326112791398150, 3.764942303022496, 4.229472464003836, 4.958535434917611, 5.355188945904279, 6.062099599822776, 6.774324012176943, 7.362936254504092, 7.609551022605158, 8.305512966092808, 8.677039262265176, 9.093690524406129, 9.520426933616849, 10.04192420637618, 10.75977634309922, 11.29762498234281, 11.74102261104532, 11.97022486813255, 12.63750040451009, 13.28027949360342, 13.96582087213675

Graph of the $Z$-function along the critical line