Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 17 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 2·5-s + 6-s + 8-s + 9-s − 2·10-s − 4·11-s + 12-s − 2·13-s − 2·15-s + 16-s + 17-s + 18-s + 4·19-s − 2·20-s − 4·22-s + 24-s − 25-s − 2·26-s + 27-s − 10·29-s − 2·30-s + 8·31-s + 32-s − 4·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.516·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.917·19-s − 0.447·20-s − 0.852·22-s + 0.204·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s − 1.85·29-s − 0.365·30-s + 1.43·31-s + 0.176·32-s − 0.696·33-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 102 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(102\)    =    \(2 \cdot 3 \cdot 17\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{102} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 102,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.479677927$
$L(\frac12)$  $\approx$  $1.479677927$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;17\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;17\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−19.60787398221141, −18.97481261132692, −17.79286854934361, −16.33123300834676, −15.62682950030683, −14.86810353896462, −13.82453782976521, −12.87130622556280, −11.93324918288480, −10.84353554600873, −9.570394810938146, −7.958882066985846, −7.364407200731999, −5.514578829260743, −4.138750900059067, −2.763098134093487, 2.763098134093487, 4.138750900059067, 5.514578829260743, 7.364407200731999, 7.958882066985846, 9.570394810938146, 10.84353554600873, 11.93324918288480, 12.87130622556280, 13.82453782976521, 14.86810353896462, 15.62682950030683, 16.33123300834676, 17.79286854934361, 18.97481261132692, 19.60787398221141

Graph of the $Z$-function along the critical line