Properties

Label 4-389344-1.1-c1e2-0-1
Degree $4$
Conductor $389344$
Sign $-1$
Analytic cond. $24.8249$
Root an. cond. $2.23214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8·7-s − 8-s − 6·9-s + 4·11-s − 4·13-s + 8·14-s + 16-s + 6·18-s − 4·19-s − 4·22-s + 23-s + 6·25-s + 4·26-s − 8·28-s + 4·29-s − 32-s − 6·36-s + 4·38-s + 12·41-s + 20·43-s + 4·44-s − 46-s + 34·49-s − 6·50-s − 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 3.02·7-s − 0.353·8-s − 2·9-s + 1.20·11-s − 1.10·13-s + 2.13·14-s + 1/4·16-s + 1.41·18-s − 0.917·19-s − 0.852·22-s + 0.208·23-s + 6/5·25-s + 0.784·26-s − 1.51·28-s + 0.742·29-s − 0.176·32-s − 36-s + 0.648·38-s + 1.87·41-s + 3.04·43-s + 0.603·44-s − 0.147·46-s + 34/7·49-s − 0.848·50-s − 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 389344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 389344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(389344\)    =    \(2^{5} \cdot 23^{3}\)
Sign: $-1$
Analytic conductor: \(24.8249\)
Root analytic conductor: \(2.23214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 389344,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
23$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900141268185548824896487898780, −7.934282519903949710148233882009, −7.58296953347332318996315151914, −6.74207540337883817408246132970, −6.69441913641732873591204403077, −6.23765066001608948536504848026, −5.84432417959727908710252168629, −5.40734526116830777226298884981, −4.34183165372739795918268010061, −3.88700502119652044270802644739, −3.10158434946020981235655663049, −2.63232737474552247848840602025, −2.63067144427293189510153997558, −0.807357615430292443567249537652, 0, 0.807357615430292443567249537652, 2.63067144427293189510153997558, 2.63232737474552247848840602025, 3.10158434946020981235655663049, 3.88700502119652044270802644739, 4.34183165372739795918268010061, 5.40734526116830777226298884981, 5.84432417959727908710252168629, 6.23765066001608948536504848026, 6.69441913641732873591204403077, 6.74207540337883817408246132970, 7.58296953347332318996315151914, 7.934282519903949710148233882009, 8.900141268185548824896487898780

Graph of the $Z$-function along the critical line